Deep-Learning-Kurse können Ihnen helfen zu lernen, wie neuronale Netze aufgebaut, trainiert und bewertet werden. Sie können Fähigkeiten in Modellarchitekturen, Optimierung, Datenaufbereitung und Evaluationsmethoden aufbauen. Viele Kurse stellen Frameworks und Tools vor, die das Experimentieren mit tiefen Modellen unterstützen.

DeepLearning.AI
Kompetenzen, die Sie erwerben: PyTorch (Bibliothek für Maschinelles Lernen), Umarmendes Gesicht, Künstliche neuronale Netze, Fehlersuche, Maschinelles Lernen, Verarbeitung natürlicher Sprache, MLOps (Maschinelles Lernen Operations), Tensorflow, Datenvorverarbeitung, Keras (Bibliothek für Neuronale Netze), Rekurrente Neuronale Netze (RNNs), Deep Learning, Angewandtes maschinelles Lernen, Transfer Learning, Einbettungen, Leistungsoptimierung, Faltungsneuronale Netzwerke, Computervision, Bildanalyse, Überwachtes Lernen
Auf einen Abschluss hinarbeiten
Mittel · Spezialisierung · 3–6 Monate

DeepLearning.AI
Kompetenzen, die Sie erwerben: Infinitesimalrechnung, Künstliche neuronale Netze, Python-Programmierung, Deep Learning, Rekurrente Neuronale Netze (RNNs), Lineare Algebra, Angewandtes maschinelles Lernen, Faltungsneuronale Netzwerke, Überwachtes Lernen
Mittel · Kurs · 1–4 Wochen

Kompetenzen, die Sie erwerben: Transfer Learning, PyTorch (Machine Learning Library), Model Evaluation, Vision Transformer (ViT), Keras (Neural Network Library), Deep Learning, Reinforcement Learning, Convolutional Neural Networks, Unsupervised Learning, Autoencoders, Artificial Neural Networks, Recurrent Neural Networks (RNNs), Machine Learning Methods, Generative AI, Generative Adversarial Networks (GANs), Logistic Regression, Tensorflow, Artificial Intelligence and Machine Learning (AI/ML), Image Analysis, Data Preprocessing
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Kompetenzen, die Sie erwerben: Künstliche neuronale Netze, Verarbeitung natürlicher Sprache, Maschinelles Lernen, Keras (Bibliothek für Neuronale Netze), Rekurrente Neuronale Netze (RNNs), Modellevaluation, Deep Learning, Faltungsneuronale Netzwerke, Klassifizierungs- und Regressionsbaum (CART), Auto-Kodierer, Netzwerk Architektur, Angewandtes maschinelles Lernen, Regressionsanalyse, Bildanalyse, Transfer Learning
Mittel · Kurs · 1–3 Monate

Mehrere Erzieher
Kompetenzen, die Sie erwerben: Unüberwachtes Lernen, NumPy, Datenvorverarbeitung, Prädiktive Modellierung, Tensorflow, Scikit Learn (Bibliothek für Maschinelles Lernen), Künstliche Intelligenz, Maschinelles Lernen, Deep Learning, Modellevaluation, Klassifizierungsalgorithmen, Random Forest Algorithmus, Reinforcement Learning, Feature Technik, Jupyter, Transfer Learning, Lernen mit Entscheidungsbäumen, Angewandtes maschinelles Lernen, Datenethik, Überwachtes Lernen
Anfänger · Spezialisierung · 1–3 Monate

DeepLearning.AI
Kompetenzen, die Sie erwerben: PyTorch (Machine Learning Library), Model Deployment, Convolutional Neural Networks, Transfer Learning, Generative AI, Deep Learning, Image Analysis, MLOps (Machine Learning Operations), Data Pipelines, Embeddings, Artificial Neural Networks, Model Evaluation, Data Preprocessing, Software Visualization, Computer Vision, Natural Language Processing, Machine Learning
Mittel · Berufsbezogenes Zertifikat · 1–3 Monate

Kompetenzen, die Sie erwerben: Logistische Regression, PyTorch (Bibliothek für Maschinelles Lernen), Methoden des Maschinellen Lernens, Deep Learning, Künstliche neuronale Netze, Modellevaluation, Klassifizierungsalgorithmen, Angewandtes maschinelles Lernen, Faltungsneuronale Netzwerke, Künstliche Intelligenz und Maschinelles Lernen (KI/ML), Überwachtes Lernen
Mittel · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Model Evaluation, Convolutional Neural Networks, Data Preprocessing, Keras (Neural Network Library), Image Analysis, Deep Learning, Tensorflow, Computer Vision, Artificial Neural Networks, Recurrent Neural Networks (RNNs), Data Manipulation, Data Transformation, Financial Forecasting, Data Visualization, Time Series Analysis and Forecasting, Exploratory Data Analysis, Python Programming, Customer Analysis, Applied Machine Learning, Cloud Computing
Anfänger · Spezialisierung · 1–3 Monate

Imperial College London
Kompetenzen, die Sie erwerben: Bayessche Statistik, Wahrscheinlichkeitsverteilung, Datenvorverarbeitung, Modell-Bereitstellung, Verarbeitung natürlicher Sprache, Tensorflow, Computervision, Modellevaluation, Deep Learning, Keras (Bibliothek für Neuronale Netze), Rekurrente Neuronale Netze (RNNs), Künstliche neuronale Netze, Transfer Learning, Faltungsneuronale Netzwerke, Generative Modellarchitekturen, Auto-Kodierer, Bildanalyse, Angewandtes maschinelles Lernen, Überwachtes Lernen, Daten-Pipelines
Mittel · Spezialisierung · 3–6 Monate

IBM
Kompetenzen, die Sie erwerben: Schnelles Engineering, PyTorch (Bibliothek für Maschinelles Lernen), Generative KI, Vision Transformer (ViT), Vektor-Datenbanken, Unüberwachtes Lernen, Python-Programmierung, Maschinelles Lernen, Keras (Bibliothek für Neuronale Netze), Modellevaluation, Datenverarbeitung, LLM-Bewerbung, Apache Spark, Generative Modellarchitekturen, Computervision, Modellierung großer Sprachen, Überwachtes Lernen, Transfer Learning, Abruf-erweiterte Erzeugung, PySpark
Auf einen Abschluss hinarbeiten
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Pearson
Kompetenzen, die Sie erwerben: Large Language Modeling, Deep Learning, Prompt Engineering, Image Analysis, Model Deployment, Recurrent Neural Networks (RNNs), PyTorch (Machine Learning Library), Convolutional Neural Networks, Tensorflow, Vision Transformer (ViT), LLM Application, Transfer Learning, Computer Vision, Responsible AI, Natural Language Processing, Embeddings, Keras (Neural Network Library), Generative AI, Artificial Neural Networks, Multimodal Prompts
Mittel · Spezialisierung · 1–4 Wochen

MathWorks
Kompetenzen, die Sie erwerben: Model Evaluation, Computer Vision, Model Deployment, Anomaly Detection, Convolutional Neural Networks, Image Analysis, Transfer Learning, Matlab, Deep Learning, Artificial Neural Networks, Applied Machine Learning, PyTorch (Machine Learning Library), Data Preprocessing, Classification Algorithms, Data Visualization, Data Synthesis, Performance Tuning, Data Analysis
Anfänger · Spezialisierung · 1–3 Monate
Deep Learning ist ein Teilbereich des Maschinellen Lernens, bei dem neuronale Netze mit vielen Schichten (daher der Begriff "tief") zur Analyse verschiedener Arten von Daten eingesetzt werden. Es ist wichtig, weil es Computer in die Lage versetzt, Aufgaben auszuführen, die normalerweise menschliche Intelligenz erfordern, wie etwa Bilderkennung, Verarbeitung natürlicher Sprache und Entscheidungsfindung. AS entwickelt sich weiter und Deep Learning wird immer mehr zu einem integralen Bestandteil verschiedener Branchen und treibt Innovationen in den Bereichen Automatisierung, Gesundheitswesen, Finanzen und mehr voran.
Eine Laufbahn im Bereich Deep Learning kann die Türen zu verschiedenen Beschäftigungsmöglichkeiten öffnen. Zu den gängigen Positionen gehören Deep Learning Engineer, Data Scientist, Ingenieur für Maschinelles Lernen, KI-Forscher und Computer Vision Engineer. In diesen Positionen geht es oft darum, Deep-Learning-Modelle zu entwerfen und zu implementieren, Daten zu analysieren und Algorithmen zu entwickeln, die aus Daten lernen und auf deren Basis Vorhersagen machen können.
Um im Deep Learning erfolgreich zu sein, sollten Sie eine solide Grundlage in mehreren Schlüsselkompetenzen entwickeln. Dazu gehören Programmiersprachen wie Python, das Verständnis von Konzepten des Maschinellen Lernens, die Beherrschung von Deep Learning-Frameworks wie TensorFlow und PyTorch sowie Kenntnisse in Mathematik, insbesondere in linearer Algebra und Infinitesimalrechnung. Vertrautheit mit Techniken zur Datenvorverarbeitung und Modellevaluation ist ebenfalls von Vorteil.
Für alle, die sich für Deep Learning interessieren, gibt es zahlreiche Online-Kurse. Einige der besten Optionen sind die Deep Learning Spezialisierung und das IBM Deep Learning with PyTorch, Keras and Tensorflow Professional Zertifikat. Diese Kurse bieten ein umfassendes Training und praktische Erfahrung in Deep Learning-Techniken und -Anwendungen.
Ja. Sie können Deep Learning auf Coursera auf zwei Arten kostenlos erlernen:
Wenn Sie weiterlernen, ein Zertifikat in Deep Learning erwerben oder den vollen Kurszugang nach der Vorschau oder Probezeit freischalten möchten, können Sie ein Upgrade durchführen oder finanzielle Unterstützung beantragen.
Um Deep Learning effektiv zu erlernen, sollten Sie zunächst eine solide Grundlage in Programmierung und Mathematik schaffen. Besuchen Sie Einführungskurse, um die Grundlagen des Maschinellen Lernens und neuronaler Netzwerke zu verstehen. Arbeiten Sie sich schrittweise in fortgeschrittenere Themen und praktische Anwendungen ein, indem Sie an Projekten arbeiten. Auch die Teilnahme an Online-Communities und Foren kann Ihnen Unterstützung bieten und Ihre Lernerfahrung verbessern.
Deep Learning-Kurse decken in der Regel einen Bereich von Themen ab, darunter Netzwerkarchitekturen, Convolutional Neural Networks (CNNs), Rekurrente neuronale Netze (RNNs), Verarbeitung natürlicher Sprache und Bestärkendes Lernen. Darüber hinaus können in den Kursen praktische Anwendungen in Bereichen wie Computer Vision, Gesundheitswesen und Finanzen untersucht werden, um den Lernenden ein umfassendes Verständnis dafür zu vermitteln, wie Deep Learning in realen Szenarien angewendet werden kann.
Für das Training und die Weiterbildung von Mitarbeitern im Bereich Deep Learning können spezialisierte Kurse wie die Spezialisierung KI ML mit Deep Learning und überwachten Modellen und die Spezialisierung Deep Learning für das Gesundheitswesen besonders nützlich sein. Diese Programme konzentrieren sich auf praktische Fähigkeiten und Anwendungen und sind daher für die Personalentwicklung geeignet.