筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“mlops(机器学习 operator)” 的结果
- 状态:新状态:免费试用
您将获得的技能: MLOps (Machine Learning Operations), AWS SageMaker, Artificial Intelligence and Machine Learning (AI/ML), Amazon Web Services, Predictive Modeling, Applied Machine Learning, Data Processing, Regression Analysis, Machine Learning, Supervised Learning, Feature Engineering, Data Cleansing, Continuous Deployment, Unsupervised Learning
- 状态:免费试用
Duke University
您将获得的技能: 微软 Azure, 云计算, Python 程序设计, 数据分析, 数据管理, MLOps(机器学习 Operator), 应用程序部署, 数据操作, GitHub, 探索性数据分析, CI/CD, 机器学习, AWS SageMaker, 数据管道, Devops, 集装箱化, 大数据, Pandas(Python 软件包), NumPy, 负责任的人工智能
- 状态:免费试用
Duke University
您将获得的技能: 可扩展性, Prompt Engineering, MLOps(机器学习 Operator), 数据湖, 数据库管理系统, AWS SageMaker, 生成模型架构, 性能分析, ChatGPT, 多模式 Prompt, 生成式人工智能, 性能调整, 工作流程管理, 摘录, LLM 申请, 大型语言模型, 阿帕奇气流, OpenAI, 数据库, 亚马逊基岩
- 状态:免费试用
您将获得的技能: MLOps (Machine Learning Operations), Google Cloud Platform, Cloud Management, DevOps, Continuous Deployment, CI/CD, Machine Learning, Automation, Data Pipelines, Version Control
- 状态:新状态:免费试用
National Taiwan University
您将获得的技能: Operations Research, Mathematical Modeling, Process Optimization, Report Writing, Business Mathematics, Network Model, Business Modeling, Industrial Engineering, Linear Algebra, Business Operations, Applied Mathematics, Operations Management, Algorithms, Resource Allocation, Case Studies, Engineering Calculations, Project Design, Machine Learning, Program Implementation, Business Analytics
- 状态:新
您将获得的技能: MLOps (Machine Learning Operations), AWS SageMaker, CI/CD, DevOps, Data Processing, Data Management, Machine Learning, Predictive Modeling, Automation, Data Pipelines, Applied Machine Learning, Continuous Monitoring
是什么让您今天来到 Coursera?
- 状态:新
Google Cloud
您将获得的技能: MLOps (Machine Learning Operations), Tensorflow, Google Cloud Platform, Systems Design, Applied Machine Learning, Machine Learning, Systems Architecture, Data Validation, Technical Design, Performance Tuning, Distributed Computing, Scalability, Data Pipelines, Debugging
- 状态:免费试用
Duke University
您将获得的技能: 数据结构, 命令行界面, 面向对象编程(OOP), 数据导入/导出, Python 程序设计, 应用编程接口 (API), MLOps(机器学习 Operator), 数据操作, 调试, 数值分析, 机器学习, 测试自动化, 计划发展, Pandas(Python 软件包), NumPy, 脚本, 软件测试
- 状态:免费试用
Peking University
您将获得的技能: Data Structures, Algorithms, C++ (Programming Language), Object Oriented Programming (OOP), C (Programming Language), Graph Theory, Program Development, Programming Principles, Computer Programming, Computational Thinking, Data Storage, Pseudocode, Theoretical Computer Science, Data Management, Computer Science, Application Development, Software Design, Computer Architecture, Software Engineering, Mathematical Modeling
- 状态:免费试用
Duke University
您将获得的技能: 命令行界面, Docker (软件), MLOps(机器学习 Operator), 人工智能和机器学习(AI/ML), 拉斯特(编程语言), 无服务器计算, GitHub, CI/CD, 机器学习, 网络框架, 集装箱化, PyTorch(机器学习库), 大数据, 云计算解决方案, Devops, Microsoft Copilot, 张力流, 负责任的人工智能
- 状态:预览
您将获得的技能: MLOps (Machine Learning Operations), Data Modeling, Google Cloud Platform, Feature Engineering, Application Deployment, DevOps, Data Processing, Data Management, Data Storage
- 状态:预览
Coursera Instructor Network
您将获得的技能: MLOps (Machine Learning Operations), CI/CD, Continuous Deployment, Docker (Software), Kubernetes, Containerization, Scalability, Continuous Integration, DevOps, Data Infrastructure, IT Infrastructure, Infrastructure Architecture, Cloud Infrastructure, Artificial Intelligence and Machine Learning (AI/ML), Continuous Monitoring, Real Time Data, Version Control
总之,以下是 10 最受欢迎的 mlops(机器学习 operator) 课程
- AWS: Machine Learning & MLOps Foundations: Whizlabs
- MLOps | 机器学习运营: Duke University
- Large Language Model Operations (LLMOps): Duke University
- Machine Learning Operations (MLOps): Getting Started: Google Cloud
- Operations Research: National Taiwan University
- Learn MLOps for Machine Learning: Pearson
- 프로덕션 머신러닝 시스템: Google Cloud
- 面向 MLOps 的 Python 基本知识: Duke University
- 程序设计与算法: Peking University
- DevOps、DataOps、MLOps: Duke University