Packt
DevOps to MLOps Bootcamp– Build & Deploy ML Systems

通过 Coursera Plus 获取 10,000 多门课程的 Accessibility

Packt

DevOps to MLOps Bootcamp– Build & Deploy ML Systems

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Implement end-to-end MLOps pipelines from data preparation to production deployment.

  • Containerize ML models using Docker and deploy with FastAPI and Streamlit interfaces.

  • Build scalable model inference infrastructure using Kubernetes clusters and services.

  • Automate CI/CD pipelines and monitoring workflows using GitHub Actions and KEDA.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

October 2025

作业

10 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有8个模块

In this module, you will be introduced to MLOps, its core principles, and its importance in modern machine learning workflows. The evolution from traditional MLOps to emerging paradigms like LLMOps and AgenticAIOps will be covered. You'll also compare DevOps and MLOps, examining their similarities and differences, and explore the growing role of the MLOps Engineer.

涵盖的内容

7个视频1篇阅读材料1个作业

In this module, you will set up the environment and tools necessary to work on the house price prediction project. You'll get hands-on experience in setting up Docker containers, configuring MLflow for experiment tracking, and creating isolated Python virtual environments for reproducibility. Additionally, you'll understand the end-to-end ML lifecycle and how MLOps practices integrate into it.

涵盖的内容

10个视频1个作业

This module focuses on preparing and transforming raw data for modeling. You will learn essential data engineering and feature engineering techniques, including how to split data for training and testing. Additionally, you will experiment with different algorithms and hyperparameter tuning to identify the optimal model configuration.

涵盖的内容

10个视频1个作业

In this module, you’ll transition from model development to deployment. You’ll learn to package your model with FastAPI and create a user interface with Streamlit. The module focuses on containerizing the application with Docker and Docker Compose to ensure the deployment is scalable and production-ready.

涵盖的内容

10个视频1个作业

This module covers the automation of MLOps pipelines using GitHub Actions for continuous integration (CI). You’ll learn to create workflows that automate the model training, testing, and deployment processes. The integration of MLflow and Docker will streamline model tracking and container management as part of the CI pipeline.

涵盖的内容

10个视频1个作业

This module introduces Kubernetes as a platform for deploying scalable machine learning models in production. You will learn how to architect and deploy ML model serving infrastructure using Kubernetes, including configuring pods, services, and deployments. You'll also generate and customize Kubernetes YAML manifests to automate deployment and scaling.

涵盖的内容

11个视频1个作业

In this module, you will focus on monitoring and autoscaling of machine learning models in production. Using Prometheus and Grafana, you'll implement system monitoring and visualize performance metrics. You'll also learn to automate scaling using KEDA and VPA based on resource usage, and conduct load testing to evaluate system capacity under stress.

涵盖的内容

14个视频1个作业

This module introduces GitOps principles and how they can streamline deployment in MLOps. You will learn how to use ArgoCD to implement continuous delivery (CD) pipelines and manage ML/LLM application deployments. By designing end-to-end CI/CD workflows, you’ll understand how GitOps ensures a seamless, automated deployment process for machine learning models.

涵盖的内容

8个视频3个作业

位教师

Packt - Course Instructors
Packt
1,186 门课程292,430 名学生

提供方

Packt

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题