筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“machine learning software” 的结果
- 状态:新状态:免费试用
您将获得的技能: Generative AI, Supervised Learning, Generative Model Architectures, Unsupervised Learning, Large Language Modeling, Time Series Analysis and Forecasting, Exploratory Data Analysis, LLM Application, Applied Machine Learning, Data Collection, Machine Learning Algorithms, OpenAI, Feature Engineering, Data Ethics, Dimensionality Reduction, MLOps (Machine Learning Operations), Machine Learning, Multimodal Prompts, Data Processing, Network Architecture
- 状态:免费试用
多位教师
您将获得的技能: Python 程序设计, 分类与回归树 (CART), 决策树学习, 监督学习, 数据伦理, 人工智能, 预测建模, 人工智能和机器学习(AI/ML), 随机森林算法, 应用机器学习, 机器学习, 负责任的人工智能, 功能工程, Jupyter, 无监督学习, 张力流, Scikit-learn (机器学习库), NumPy, 深度学习, 强化学习
- 状态:新状态:免费试用
您将获得的技能: Plot (Graphics), Scripting, Scientific Visualization, Visualization (Computer Graphics), Graphing, Scripting Languages, Scalability, Text Mining, Statistical Analysis, Time Series Analysis and Forecasting, Data Visualization, Descriptive Statistics, Mathematical Software, Numerical Analysis, Software Installation, Mathematical Modeling, Predictive Modeling, Programming Principles, Python Programming, Data Analysis
- 状态:免费试用
IBM
您将获得的技能: Python 程序设计, 回归分析, 数据科学, 监督学习, 预测建模, 机器学习算法, 探索性数据分析, 降维, 统计方法, 功能工程, 统计假设检验, 统计推理, 数据处理, 生成模型架构, 数据分析, 应用机器学习, 强化学习, 机器学习, 无监督学习, 深度学习
- 状态:新状态:预览
您将获得的技能: Reinforcement Learning, Dimensionality Reduction, PyTorch (Machine Learning Library), Deep Learning, Generative AI, Pandas (Python Package), Scikit Learn (Machine Learning Library), Python Programming, Machine Learning, Artificial Neural Networks, Data Processing, Natural Language Processing, Feature Engineering, Predictive Modeling, Supervised Learning, Unsupervised Learning, Data Transformation, NumPy
- 状态:新
您将获得的技能: Exploratory Data Analysis, Data Analysis, Amazon Elastic Compute Cloud, Amazon CloudWatch, Application Deployment, Predictive Modeling, Data Pipelines, Data Processing
是什么让您今天来到 Coursera?
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 线性代数, 统计分析, 微积分, 数据转换, 应用数学, A/B 测试, 降维, NumPy, 概率, 概率分布, 描述性统计, 统计假设检验, 概率与统计, 数值分析, 机器学习, Machine Learning 方法, 统计推理, 抽样(统计), 数学建模, 贝叶斯统计
- 状态:免费试用状态:人工智能技能
University of Pennsylvania
您将获得的技能: Statistical Machine Learning, PyTorch (Machine Learning Library), Statistical Methods, Probability, Probability & Statistics, Sampling (Statistics), Deep Learning, Probability Distribution, Python Programming, Supervised Learning, Statistics, Machine Learning Methods, Machine Learning, Regression Analysis, Data Processing, Agentic systems, Data Science, Artificial Intelligence, Artificial Neural Networks, Algorithms
- 状态:免费试用
Imperial College London
您将获得的技能: Python 程序设计, 线性代数, 数据操作, 回归分析, 微积分, 统计分析, 统计, 数据科学, 应用数学, 降维, Algorithm, NumPy, 机器学习算法, 人工神经网络, 概率与统计, 衍生产品, Jupyter, 高等数学, 机器学习
- 状态:免费试用
您将获得的技能: 统计建模, 决策树学习, 回归分析, 分类与回归树 (CART), 预测建模, 监督学习, 降维, 机器学习, 应用机器学习, 无监督学习, Scikit-learn (机器学习库), 功能工程
- 状态:免费试用
Duke University
您将获得的技能: 数据管道, Python 程序设计, MLOps(机器学习 Operator), 云计算, GitHub, Pandas(Python 软件包), 数据操作, 应用程序部署, CI/CD, 探索性数据分析, AWS SageMaker, 数据管理, Data Management, 负责任的人工智能, Devops, 大数据, 微软 Azure, 机器学习, 数据分析, NumPy, 集装箱化
- 状态:免费试用
Johns Hopkins University
您将获得的技能: PyTorch (Machine Learning Library), Unsupervised Learning, Computer Vision, Machine Learning Algorithms, Applied Machine Learning, Image Analysis, Dimensionality Reduction, Supervised Learning, Reinforcement Learning, Feature Engineering, Regression Analysis, Data Cleansing, Machine Learning, Data Mining, Scikit Learn (Machine Learning Library), Statistical Machine Learning, Advanced Analytics, Deep Learning, Artificial Neural Networks, Decision Tree Learning
总之,以下是 10 最受欢迎的 machine learning software 课程
- Machine Learning with Scikit-learn, PyTorch & Hugging Face: Coursera
- 机器学习: DeepLearning.AI
- Octave for Machine Learning: Data Analysis Mastery: EDUCBA
- IBM 机器学习: IBM
- Machine Learning with PyTorch and Scikit-Learn: Packt
- AWS Certified Machine Learning - Specialty: Pearson
- 机器学习和数据科学数学: DeepLearning.AI
- AI and Machine Learning Essentials with Python: University of Pennsylvania
- 机器学习数学: Imperial College London
- 使用 Python 进行机器学习: IBM