O.P. Jindal Global University
Machine Learning
O.P. Jindal Global University

Machine Learning

1,921 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
攻读学位

您将学到什么

  • Learn to frame real-world challenges as machine learning problems. Gain hands-on experience using Python to build and evaluate models.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

June 2025

作业

16 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有11个模块

Welcome to the Machine Learning course! In this course, you will gain an in-depth introduction to building machine-learning models using Python. In this course, you will initially recapitulate the key Python libraries which are useful for Data Science applications. This includes coverage of Python libraries like Matplotlib, NumPy, and pandas. Next, you are introduced to the basics of machine learning, and the various classification and regression techniques are discussed. Also, the implementation of these techniques using the popular scikit-learn package is covered in detail. Artificial neural networks and the concept of deep learning is next explored with hands-on implementation of regression and classification algorithms using TensorFlow. As businesses increasingly draw insights from unstructured data (text, images, etc.), you would also get insights into neural networks-based deep learning models for the analysis of text and images. This is an advanced-level course, intended for learners with a background using predictive tools and techniques, and a basic understanding of Python programming concepts. The knowledge you gain from this course will help your career as a business analyst or a data engineer and even work toward becoming a data scientist. You will gain skills to apply machine learning algorithms to structured and unstructured data to draw management insights. Data science is an exciting new field used by various organizations to perform data-driven decisions. It is a combination of technical knowledge, mathematics, and business. In this module, we will use Python, one of the most popular languages among all the languages used by data scientists. We will also understand various topics of data science and how to apply them in a real-world scenario.

涵盖的内容

9个视频5篇阅读材料2个作业1个讨论话题

This assessment is a graded quiz based on the modules covered this week.

涵盖的内容

1个作业

In this module, you will learn about the origin and evolution of machine learning. You will also learn the different ways a machine can learn, and the essential components needed to develop a machine-learning model. You will get an overview of different types of algorithms that you can use to train machine-learning models for specific business problems. The nature and type of data needed to train these algorithms will also be discussed. The module also discusses the different real-world and business best practices and challenges one will have to be sensitive to while deploying machine learning to support business operations.

涵盖的内容

9个视频2篇阅读材料2个作业

In this module, you will re-examine several machine learning models. We will discuss hands-on tasks that machine learning is commonly applied to, and you will learn to measure the performance of machine learning systems. We will work with a popular library for the Python programming language called scikit-learn, which has assembled state-of-the-art implementations of many machine learning algorithms.

涵盖的内容

9个视频4篇阅读材料2个作业1个讨论话题

This assessment is a graded quiz based on the modules covered this week.

涵盖的内容

1个作业

In this module, you will learn about artificial neural networks (ANNs) and their role in machine learning. You will also learn about the perceptron, the first real-world application based on neural networks. The concepts of weights, biases, and activation functions along with their role in analyzing data and training of ANNs will be discussed. We will also discuss how concepts like backpropagation and gradient descent affect the process of learning with ANNs.

涵盖的内容

6个视频2篇阅读材料2个作业

In this module, you will learn about using neural network technique for predictive tasks. You will also learn how to use the Python open source TensorFlow machine learning library for implementing regression and classification models to draw insights from structured and unstructured text data. The module also discusses methods for hyperparameter tuning for performance improvement. Lastly, this module will help you to define deep learning models and look at the problem of overfitting and look at ways to identify and overcome it.

涵盖的内容

11个视频4篇阅读材料2个作业1个讨论话题

This assessment is a graded quiz based on the module covered this week.

涵盖的内容

1个作业

In this module, you will be introduced to the concept of word and image embeddings which are transforming natural language and image processing applications. You will learn how to generate word embeddings using a corpus of text and also use pre trained word embeddings like Glove and Fasttext. This module will also discuss convolution neural networks and image vector-based models for image classification tasks.

涵盖的内容

11个视频4篇阅读材料2个作业1个讨论话题

This assessment is a graded quiz based on the modules covered this week.

涵盖的内容

1个作业

This module describes the learning objectives, and submission instructions for the End-term Assignment for the course.

涵盖的内容

1个视频

攻读学位

课程 是 O.P. Jindal Global University提供的以下学位课程的一部分。如果您被录取并注册,您已完成的课程可计入您的学位学习,您的学习进度也可随之转移。

 

位教师

Dr. Mohit Bhatnagar
O.P. Jindal Global University
5 门课程2,705 名学生

提供方

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题