筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
探索机器学习数学课程目录
- 状态:免费试用
您将获得的技能: 机器学习算法, 分类与回归树 (CART), Python 程序设计, 回归分析, 降维, 机器学习, 统计分析, 应用机器学习, Scikit-learn (机器学习库), 功能工程, 监督学习, 无监督学习, 预测建模
- 状态:免费试用
Imperial College London
您将获得的技能: 数据科学, Python 程序设计, 降维, NumPy, 统计, 概率与统计, 线性代数, 机器学习, 微积分, Jupyter
- 状态:新状态:免费试用
Coursera
您将获得的技能: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
- 状态:免费试用
Johns Hopkins University
您将获得的技能: PyTorch (Machine Learning Library), Unsupervised Learning, Computer Vision, Machine Learning Algorithms, Applied Machine Learning, Image Analysis, Dimensionality Reduction, Supervised Learning, Reinforcement Learning, Feature Engineering, Regression Analysis, Data Cleansing, Machine Learning, Data Mining, Scikit Learn (Machine Learning Library), Statistical Machine Learning, Advanced Analytics, Deep Learning, Artificial Neural Networks, Decision Tree Learning
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning
- 状态:新状态:预览
O.P. Jindal Global University
您将获得的技能: Supervised Learning, Tensorflow, Image Analysis, Artificial Neural Networks, Scikit Learn (Machine Learning Library), Python Programming, Machine Learning, Deep Learning, Unstructured Data, NumPy, Matplotlib, Natural Language Processing, Text Mining, Pandas (Python Package), Regression Analysis, Performance Tuning
- 状态:免费试用
University of Michigan
您将获得的技能: 决策树学习, 无监督学习, 监督学习, Python 程序设计, 回归分析, 降维, 机器学习, 功能工程, 随机森林算法, 应用机器学习, Scikit-learn (机器学习库), 预测建模
- 状态:预览
Johns Hopkins University
您将获得的技能: Descriptive Statistics, Linear Algebra, Exploratory Data Analysis, Data-Driven Decision-Making, Data Analysis, Bayesian Statistics, Statistics, Artificial Intelligence and Machine Learning (AI/ML), Artificial Intelligence, Probability, Regression Analysis, Calculus, Statistical Analysis, Advanced Mathematics, Applied Mathematics, Probability Distribution, Mathematical Modeling, Integral Calculus, Algebra, Machine Learning Algorithms
- 状态:预览
Duke University
您将获得的技能: 监督学习, 深度学习, 计算机视觉, 人工神经网络, Python 程序设计, 医学影像, 机器学习, 强化学习, 应用机器学习, Machine Learning 方法, PyTorch(机器学习库), 自然语言处理, 无监督学习, 图像分析
- 状态:预览
University of London
您将获得的技能: 数据分析, 数据处理, 计算机视觉, 功能工程, 深度学习, 数据收集, 人工智能, 应用机器学习, 机器学习, 监督学习
- 状态:免费试用
Johns Hopkins University
您将获得的技能: 机器学习算法, 分类与回归树 (CART), 数据处理, R 语言程序设计(中文版), 随机森林算法, 数据收集, 机器学习, 应用机器学习, 预测分析, 功能工程, 监督学习, 回归分析, 预测建模
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 决策树学习, 负责任的人工智能, 监督学习, 分类与回归树 (CART), 人工神经网络, 随机森林算法, 深度学习, 数据伦理, 机器学习, 张力流, 性能调整
Mathematics For Machine Learning 学习者还搜索
总之,以下是 10 最受欢迎的 mathematics for machine learning 课程
- 使用 Python 进行机器学习: IBM
- 机器学习数学PCA: Imperial College London
- Foundations of Machine Learning: Coursera
- Applied Machine Learning: Johns Hopkins University
- The Nuts and Bolts of Machine Learning: Google
- Machine Learning: O.P. Jindal Global University
- Python 中的应用机器学习: University of Michigan
- Foundational Mathematics for AI: Johns Hopkins University
- 机器学习概论: Duke University
- 全民机器学习: University of London