Coursera
Foundations of Machine Learning
Coursera

Foundations of Machine Learning

2,227 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累 Machine Learning 领域的专业知识

本课程是 Machine Learning with Scikit-learn, PyTorch & Hugging Face 专业证书 专项课程的一部分
在注册此课程时,您还会同时注册此专业证书。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 通过 Coursera 获得可共享的职业证书

该课程共有4个模块

Welcome to supervised learning, the foundation of modern machine learning! In this module, you'll master essential algorithms such as linear regression, logistic regression, decision trees, and support vector machines (SVMs) that form the backbone of predictive analytics. We'll guide you through hands-on implementations using industry-standard tools like Scikit-learn, helping you build models that can predict outcomes with impressive accuracy. By the end of this module, you'll be able to select the right algorithm for different problems, train and evaluate models effectively, and interpret their results to drive data-informed decisions.

涵盖的内容

13个视频10篇阅读材料6个作业4个非评分实验室2个插件

What do you do when your data doesn't have labeled examples? In this module, you'll explore unsupervised learning, where algorithms find structure and insights in data all on their own. You'll master clustering techniques like K-Means and hierarchical clustering to group similar customers, products, or behaviors, and learn how to detect anomalies that could represent fraud or unusual events. By the end of this module, you'll be equipped with powerful tools to uncover hidden insights in your data that supervised methods might miss, expanding your toolkit for real-world data science challenges.

涵盖的内容

10个视频8篇阅读材料5个作业4个非评分实验室3个插件

Did you know that data preparation often determines model success more than algorithm selection? In this essential module, you'll learn the critical skills of data preprocessing and feature engineering that separate novice from professional data scientists. We'll guide you through handling missing data, encoding categorical variables, scaling features, and selecting the most important attributes that will make your models shine. By mastering these techniques, you'll dramatically improve your models' accuracy and reliability, ensuring they perform well on real-world messy data that would otherwise cause less-prepared models to fail.

涵盖的内容

11个视频7篇阅读材料5个作业4个非评分实验室4个插件

Let's figure out how to properly make forecasts from time-based data! In this module, you'll learn specialized techniques for working with time-dependent data like stock prices, sales forecasts, and sensor readings that traditional ML approaches can't handle effectively. You'll implement practical forecasting models using tools like ARIMA, Exponential Smoothing, and Facebook Prophet, understanding how to identify trends, seasonality, and other temporal patterns. By the end of this module, you'll be able to build accurate forecasting systems that can predict future values based on historical patterns, adding a powerful and in-demand skill to your machine learning toolkit.

涵盖的内容

9个视频5篇阅读材料4个作业1个编程作业3个非评分实验室3个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Professionals from the Industry
Coursera
27 门课程6,623 名学生

提供方

Coursera

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题