Welcome to the Foundations of Machine Learning, your practical guide to fundamental techniques powering data-driven solutions. Master key ML domains—supervised learning (prediction), unsupervised learning (pattern discovery), data preprocessing & feature engineering, and time series forecasting—using Pandas, Scikit-learn, Statsmodels, and Prophet to tackle real-world challenges.


Foundations of Machine Learning
2,227 人已注册
包含在 中
您将获得的技能
- Scikit Learn (Machine Learning Library)
- Unsupervised Learning
- Anomaly Detection
- Statistical Modeling
- Supervised Learning
- Machine Learning
- Applied Machine Learning
- Data Cleansing
- Data Manipulation
- Forecasting
- Machine Learning Algorithms
- Regression Analysis
- Data Processing
- Data Transformation
- Predictive Modeling
- Time Series Analysis and Forecasting
- Predictive Analytics
- Dimensionality Reduction
- Feature Engineering
要了解的详细信息

添加到您的领英档案
August 2025
20 项作业
了解顶级公司的员工如何掌握热门技能

积累 Machine Learning 领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 通过 Coursera 获得可共享的职业证书

该课程共有4个模块
Welcome to supervised learning, the foundation of modern machine learning! In this module, you'll master essential algorithms such as linear regression, logistic regression, decision trees, and support vector machines (SVMs) that form the backbone of predictive analytics. We'll guide you through hands-on implementations using industry-standard tools like Scikit-learn, helping you build models that can predict outcomes with impressive accuracy. By the end of this module, you'll be able to select the right algorithm for different problems, train and evaluate models effectively, and interpret their results to drive data-informed decisions.
涵盖的内容
13个视频10篇阅读材料6个作业4个非评分实验室2个插件
What do you do when your data doesn't have labeled examples? In this module, you'll explore unsupervised learning, where algorithms find structure and insights in data all on their own. You'll master clustering techniques like K-Means and hierarchical clustering to group similar customers, products, or behaviors, and learn how to detect anomalies that could represent fraud or unusual events. By the end of this module, you'll be equipped with powerful tools to uncover hidden insights in your data that supervised methods might miss, expanding your toolkit for real-world data science challenges.
涵盖的内容
10个视频8篇阅读材料5个作业4个非评分实验室3个插件
Did you know that data preparation often determines model success more than algorithm selection? In this essential module, you'll learn the critical skills of data preprocessing and feature engineering that separate novice from professional data scientists. We'll guide you through handling missing data, encoding categorical variables, scaling features, and selecting the most important attributes that will make your models shine. By mastering these techniques, you'll dramatically improve your models' accuracy and reliability, ensuring they perform well on real-world messy data that would otherwise cause less-prepared models to fail.
涵盖的内容
11个视频7篇阅读材料5个作业4个非评分实验室4个插件
Let's figure out how to properly make forecasts from time-based data! In this module, you'll learn specialized techniques for working with time-dependent data like stock prices, sales forecasts, and sensor readings that traditional ML approaches can't handle effectively. You'll implement practical forecasting models using tools like ARIMA, Exponential Smoothing, and Facebook Prophet, understanding how to identify trends, seasonality, and other temporal patterns. By the end of this module, you'll be able to build accurate forecasting systems that can predict future values based on historical patterns, adding a powerful and in-demand skill to your machine learning toolkit.
涵盖的内容
9个视频5篇阅读材料4个作业1个编程作业3个非评分实验室3个插件
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Machine Learning 浏览更多内容
- 状态:免费试用
Fractal Analytics
- 状态:预览
Coursera Project Network
- 状态:免费试用
- 状态:免费试用
Fractal Analytics
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
更多问题
提供助学金,