Packt
Deep Learning - Crash Course 2023
Packt

Deep Learning - Crash Course 2023

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Explain the fundamentals of deep learning and neural networks.

  • Use Python to build and train your own deep neural network models.

  • Differentiate between various activation functions and optimization algorithms.

  • Assess techniques for improving model performance and reducing overfitting.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

18 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有17个模块

In this module, we will welcome you to the course and provide an overview of deep learning. We will explain the course objectives, the structure of the content, and the skills and knowledge you will acquire throughout the course.

涵盖的内容

2个视频1篇阅读材料

In this module, we will lay the foundation for understanding deep learning by covering essential topics such as artificial neural networks, activation functions, and bias. We will also explore the role of data, various applications, models, loss functions, and learning algorithms crucial for model performance.

涵盖的内容

8个视频1个作业1个插件

In this module, we will provide a crash course on the basics of Python programming, essential for deep learning. You will learn how to install and use Jupyter Notebook and Google Colab, understand data types, containers, control statements, and implement functions and classes in Python.

涵盖的内容

7个视频1个作业1个插件

In this module, we will delve into Python libraries crucial for data science. You will learn how to handle arrays with NumPy, manipulate data using Pandas, and visualize data with Matplotlib. We will cover topics from basic data structures to advanced data cleaning and plotting techniques.

涵盖的内容

8个视频1个作业1个插件

In this module, we will explore the MP Neuron model, also known as the McCulloch-Pitts model. You will gain an understanding of the data intuition, learn how to find parameters, and develop a mathematical intuition for this fundamental concept in neural networks.

涵盖的内容

4个视频1个作业1个插件

In this module, we will focus on implementing the MP Neuron model in Python. You will learn how to import datasets, apply train-test split, and modify data. By the end of this section, you will have created an MP Neuron class from scratch and practiced with an assignment.

涵盖的内容

5个视频1个作业1个插件

In this module, we will summarize the key concepts and practical implementation of the MP Neuron model. We will review the important points and ensure you have a solid understanding through a recap and evaluation assignments.

涵盖的内容

1个视频1个作业1个插件

In this module, we will cover the Perceptron model, discussing its representation, loss function, and parameter updates. You will understand how the update rule works and see its practical implementation in programs.

涵盖的内容

5个视频1个作业1个插件

In this module, we will implement the Perceptron model in Python. You will learn to program the model and visualize its accuracy and performance with increasing epochs, enhancing your practical skills in deep learning.

涵盖的内容

2个视频1个作业1个插件

In this module, we will transition from Perceptron to Sigmoid Neuron. You will learn about the limitations of the Perceptron, the benefits of the Sigmoid Neuron, and gain insights into gradient descent for model optimization.

涵盖的内容

8个视频1个作业1个插件

In this module, we will implement the Sigmoid Neuron using Python. You will learn to download and standardize datasets, and create a class for the Sigmoid activation function, solidifying your understanding through practical assignments.

涵盖的内容

4个视频1个作业1个插件

In this module, we will cover basic probability concepts. You will learn about random variables, their importance, types, and probability distribution tables, as well as the concept of entropy loss in the context of deep learning.

涵盖的内容

5个视频1个作业1个插件

In this module, we will explore deep neural networks. You will learn why they are important, and through practical programming, understand the concept of linear separation of data, preparing you for more complex deep learning models.

涵盖的内容

2个视频1个作业1个插件

In this module, we will delve into the Universal Approximation Theorem. You will learn its significance, confirm its effectiveness with practical examples, and discuss the challenges of building deep neural networks from scratch.

涵盖的内容

4个视频1个作业1个插件

In this module, we will focus on TensorFlow 2.x for deep learning. You will learn to build, train, and evaluate neural networks using TensorFlow, with a recap of deep learning concepts and a summary to prepare for more advanced topics.

涵盖的内容

7个视频1个作业1个插件

In this module, we will cover activation functions in deep learning. You will learn about different activation functions provided by TensorFlow and understand common network configurations used in deep learning tasks.

涵盖的内容

4个视频1个作业1个插件

In this module, we will apply deep learning concepts. You will transition from shallow to deep learning, understand Keras basics, solve classification and regression problems, and explore advanced TensorFlow techniques and subclassing methods.

涵盖的内容

8个视频3个作业

位教师

Packt - Course Instructors
Packt
971 门课程232,654 名学生

提供方

Packt

从 Mobile and Web Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题