EDUCBA
Machine Learning with Python & Statistics
EDUCBA

Machine Learning with Python & Statistics

EDUCBA

位教师:EDUCBA

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Apply probability, sampling, and distributions to datasets.

  • Use linear algebra and hypothesis testing for data analysis.

  • Build and validate ML models with Python in real-world contexts.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

October 2025

作业

14 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 AI Machine Learning with R & Python Projects 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

This module introduces learners to the essential foundations of Machine Learning with Python, exploring its core concepts, real-world applications, and the critical role of data mining in uncovering patterns. Students will gain a strong conceptual base to understand how machine learning systems differ from traditional programming and how data-driven insights power intelligent decision-making.

涵盖的内容

8个视频3个作业

This module introduces learners to the essential concepts of sampling methods and statistical data types in Machine Learning. It explores systematic, cluster, and stratified sampling techniques, while also distinguishing between qualitative, quantitative, discrete, continuous, nominal, and ordinal data. By mastering these foundations, learners will understand how data collection and classification impact the accuracy, reliability, and effectiveness of machine learning models.

涵盖的内容

8个视频3个作业

This module provides a comprehensive foundation in probability theory, random variables, and linear algebra concepts essential for machine learning. Learners will explore probability fundamentals such as conditional probability, independence, and the law of total probability, then advance into discrete and continuous distributions including Bernoulli, geometric, and normal distributions. The module also introduces linear algebra essentials—matrices, transposes, and determinants—equipping learners with mathematical tools required to build and analyze machine learning models effectively.

涵盖的内容

16个视频4个作业

This module equips learners with the statistical foundations required to test hypotheses, interpret confidence intervals, and apply advanced inferential techniques in machine learning. Learners will explore error types, critical value and p-value approaches, tail tests, and confidence intervals. The module then advances into applied inferential statistics with t-tests, Chi-square tests, and goodness of fit measures, as well as the interpretation of covariance. By the end, learners will be able to conduct robust statistical testing and evaluate data relationships with accuracy.

涵盖的内容

23个视频4个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

EDUCBA
EDUCBA
560 门课程162,354 名学生

提供方

EDUCBA

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题