University of Colorado Boulder
Introduction to Bayesian Statistics for Data Science
University of Colorado Boulder

Introduction to Bayesian Statistics for Data Science

Brian Zaharatos

位教师:Brian Zaharatos

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Implement Bayesian inference to solve real-world statistics and data science problems. 

  • Articulate the logic of Bayesian inference and compare and contrast it with frequentist inference.

  • Utilize conjugate, improper, and objective priors to find posterior distributions. 

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

May 2025

作业

5 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有5个模块

This module introduces learners to Bayesian statistics by comparing Bayesian and frequentist methods. The introduction is motivated by an example that illustrates how different assumptions about data collection - specifically, stopping rules - can result in different conclusions when using frequentist methods. Bayesian methods, on the other hand, yield the same conclusion regardless of stopping rules. This example illuminates a key philosophical difference between frequentist and Bayesian methods.

涵盖的内容

8个视频4篇阅读材料1个作业3个编程作业1个讨论话题2个非评分实验室

This module introduces learners to Bayesian inference through an example using discrete data. The example demonstrates how the posterior distribution is calculated and how uncertainty is quantified in Bayesian statistics. The module also describes methods for summarizing the posterior distribution and introduces learners to the posterior predictive distribution through use of the Monte Carlo simulation. Monte Carlo simulations will be important for advanced computational Bayesian methods.

涵盖的内容

6个视频1个作业1个编程作业2个非评分实验室

This module introduces learners to methods for conducting Bayesian inference when the likelihood and prior distributions come from a convenient family of distributions, called conjugate families. Conjugate families are a class of prior distributions for which the posterior distribution is in the same class. The module covers the beta-binomial, normal-normal and inverse gamma-normal conjugate families and includes examples of their application to find posterior distributions in R.

涵盖的内容

7个视频1篇阅读材料1个作业1个编程作业2个非评分实验室

This module motivates, defines, and utilizes improper and so-called "objective" prior distributions in Bayesian statistical inference.

涵盖的内容

7个视频1篇阅读材料1个作业1个编程作业2个非评分实验室

In this module, learners will be introduced to Bayesian inference involving more than one unknown parameter. Multiparameter problems are motivated with a simple example: a conjugate prior, two-parameter model involving normally distributed data. From there, we learn to solve more complex problems, including Bayesian linear regression and variance-covariance matrix estimation.

涵盖的内容

9个视频1篇阅读材料1个作业1个编程作业3个非评分实验室

位教师

Brian Zaharatos
University of Colorado Boulder
4 门课程13,887 名学生

提供方

从 Probability and Statistics 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题