This advanced course teaches machine learning and AI techniques for big data systems. Learners will build end-to-end ML pipelines with PySpark ML, implement supervised and unsupervised models, and apply NLP techniques at scale. The course also explores deep learning, distributed training, and integrating Generative AI into big data workflows.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Data Analytics and Machine Learning for Big Data
Ce cours fait partie de Microsoft Big Data Management and Analytics Certificat Professionnel

Instructeur : Microsoft
Inclus avec
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 5 modules dans ce cours
This module introduces the core concepts that define machine learning in big data environments, exploring how traditional ML approaches must be adapted for massive datasets and distributed computing. Students will learn about supervised versus unsupervised learning paradigms, regression versus classification problems, and understand the unique challenges when applying machine learning to big data scenarios including scalability, distributed computing requirements, and algorithmic adaptations for large-scale processing.
Inclus
3 lectures7 devoirs
This module provides comprehensive training in implementing machine learning solutions using the PySpark ML library for big data environments. Students will master ML pipelines, transformers, and estimators while learning to develop scalable regression, classification, and clustering models. The module emphasizes practical implementation skills and platform selection strategies for enterprise ML deployments across Azure Databricks, Microsoft Fabric, and HDInsight.
Inclus
3 lectures10 devoirs
This module focuses on processing and analyzing large volumes of unstructured text data using distributed computing frameworks. Students will learn to apply NLP techniques using scalable architectures, implement text classification and sentiment analysis systems, and extract entities and relationships from massive text corpora. The module emphasizes practical skills for handling enterprise-scale text analytics requirements while integrating with Azure Cognitive Services for enhanced capabilities.
Inclus
4 devoirs
This module introduces deep learning fundamentals and advanced architectures specifically adapted for big data environments. Students will learn to implement neural networks for big data applications, apply transfer learning techniques with pre-trained models, and scale deep learning training across distributed clusters using modern frameworks and optimization techniques.
Inclus
4 devoirs
Inclus
4 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.








