This course provides a comprehensive overview of data storage and management approaches for big data. Learners will explore structured, semi-structured, and unstructured data formats, compare SQL and NoSQL database technologies, and implement data lakes and data warehouses. The course includes working with various file formats and understanding the differences between batch and real-time processing approaches.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Data Storage and Management for Big Data
Ce cours fait partie de Microsoft Big Data Management and Analytics Certificat Professionnel

Instructeur : Microsoft
Inclus avec
Expérience recommandée
Ce que vous apprendrez
- Manage big data storage and pipelines with Azure services.
- Process and analyze large datasets using Apache Spark and Databricks.
Compétences que vous acquerrez
- Catégorie : Data Integration
- Catégorie : Data Architecture
- Catégorie : Data Processing
- Catégorie : Real Time Data
- Catégorie : Data Pipelines
- Catégorie : SQL Server Integration Services (SSIS)
- Catégorie : Data Transformation
- Catégorie : Data Management
- Catégorie : Scalability
- Catégorie : NoSQL
- Catégorie : Data Governance
- Catégorie : Extract, Transform, Load
- Catégorie : Data Lakes
- Catégorie : Data Storage
- Catégorie : Databases
- Catégorie : Data Warehousing
- Catégorie : Azure Synapse Analytics
- Catégorie : Microsoft Azure
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 5 modules dans ce cours
Data Storage Technologies (SQL vs NoSQL) guides learners through the core principles of modern data storage and the trade-offs that shape today’s big data systems. The module examines how relational databases manage structured data, where they encounter limitations at scale, and how techniques such as partitioning, indexing, and lakehouse architectures mitigate performance gaps. Learners compare major NoSQL categories—including document, key-value, and column-family databases—to understand how flexible schemas and distributed designs support high-volume, high-velocity workloads. Through hands-on activities with SQL Server, Azure Synapse, and Azure Cosmos DB, learners practice essential operations, evaluate storage technologies based on workload requirements, and build the skills needed to select and implement effective database solutions for big data environments.
Inclus
6 vidéos3 lectures8 devoirs
Working with Data Formats (Structured, Semi-structured, Unstructured) helps learners build a clear understanding of how different data formats function within big data systems and why format selection matters for performance, storage, and analytical success. The module introduces structured formats, such as CSV and TSV, and explores flexible semi-structured formats, including JSON and XML. It also examines optimized file types, including Parquet, Avro, and ORC, that support large-scale analytics. Learners practice transforming data between formats using Azure Data Factory, working with nested structures, applying schema inference, and evaluating performance trade-offs across file types. Through demonstrations, code exercises, and hands-on labs, this module equips learners to select, convert, and manage data formats effectively for diverse big data scenarios.
Inclus
6 vidéos3 lectures8 devoirs
Data Lakes and Data Warehouses Implementation guides learners through the architectural foundations and hands-on skills needed to build modern analytical environments. The module explores the purpose and structure of data lakes, highlighting the zones of raw, cleaned, enriched, and curated data, and demonstrates how thoughtful design supports flexibility, governance, and large-scale analytics. Learners also study core data warehouse concepts, including dimensional modeling, star schemas, and data marts, to understand how structured storage enables high-performance querying. Through practical work with Azure Data Lake Storage Gen2 and Azure Synapse Analytics, learners design zone architectures, implement dimensional models, configure SQL pools, and apply best practices for partitioning, distribution, and optimization. By the end, they gain the ability to organize, govern, and integrate data across both lake and warehouse environments, supporting scalable, enterprise-ready analytics.
Inclus
6 vidéos3 lectures7 devoirs
Building Data Pipelines (ETL/ELT with Azure Data Factory) equips learners with the skills to design, implement, and manage scalable data integration workflows using modern, cloud-native approaches. The module examines the differences between ETL and ELT, helping learners understand when each methodology delivers the best performance, flexibility, and cost efficiency. Learners gain hands-on experience with Azure Data Factory, configuring linked services, datasets, activities, and core orchestration components, and practice building both simple and advanced pipelines. The module also introduces transformation logic, control flow patterns, parameterization, and error handling strategies that support production-ready data engineering solutions. Through walkthroughs, labs, code exercises, and scenario-based decisions, learners learn to monitor pipelines, troubleshoot failures, and design reliable data workflows that support enterprise-scale analytics.
Inclus
6 vidéos3 lectures9 devoirs
Batch and Real-Time Processing Fundamentals introduces learners to the core processing models that power modern big data systems, helping them understand when each approach delivers the most value. The module explores batch architectures, scheduling methods, and optimization strategies for large-scale historical processing, while also examining real-time stream processing concepts, including event handling, latency trade-offs, and throughput requirements. Learners gain hands-on experience implementing both models—building batch workflows with Azure Data Factory and configuring streaming pipelines using Event Hubs and Stream Analytics. Through architectural analysis, code exercises, and practical labs, learners learn to evaluate business needs, select the right processing approach, and design hybrid systems that combine batch and streaming for comprehensive analytics.
Inclus
6 vidéos3 lectures9 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
Statut : PrévisualisationNortheastern University
Statut : Essai gratuitDeepLearning.AI
Statut : Essai gratuit
Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.

