Microsoft
Data Storage and Management for Big Data

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Microsoft

Data Storage and Management for Big Data

 Microsoft

Instructeur : Microsoft

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
niveau Intermédiaire

Expérience recommandée

2 semaines à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Ce que vous apprendrez

  • - Manage big data storage and pipelines with Azure services.

    - Process and analyze large datasets using Apache Spark and Databricks.

Compétences que vous acquerrez

  • Catégorie : Data Integration
  • Catégorie : Data Architecture
  • Catégorie : Data Processing
  • Catégorie : Real Time Data
  • Catégorie : Data Pipelines
  • Catégorie : SQL Server Integration Services (SSIS)
  • Catégorie : Data Transformation
  • Catégorie : Data Management
  • Catégorie : Scalability
  • Catégorie : NoSQL
  • Catégorie : Data Governance
  • Catégorie : Extract, Transform, Load
  • Catégorie : Data Lakes
  • Catégorie : Data Storage
  • Catégorie : Databases
  • Catégorie : Data Warehousing
  • Catégorie : Azure Synapse Analytics
  • Catégorie : Microsoft Azure

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

janvier 2026

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Élaborez votre expertise en Data Analysis

Ce cours fait partie de la Microsoft Big Data Management and Analytics Certificat Professionnel
Lorsque vous vous inscrivez à ce cours, vous êtes également inscrit(e) à ce Certificat Professionnel.
  • Apprenez de nouveaux concepts auprès d'experts du secteur
  • Acquérez une compréhension de base d'un sujet ou d'un outil
  • Développez des compétences professionnelles avec des projets pratiques
  • Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 5 modules dans ce cours

Data Storage Technologies (SQL vs NoSQL) guides learners through the core principles of modern data storage and the trade-offs that shape today’s big data systems. The module examines how relational databases manage structured data, where they encounter limitations at scale, and how techniques such as partitioning, indexing, and lakehouse architectures mitigate performance gaps. Learners compare major NoSQL categories—including document, key-value, and column-family databases—to understand how flexible schemas and distributed designs support high-volume, high-velocity workloads. Through hands-on activities with SQL Server, Azure Synapse, and Azure Cosmos DB, learners practice essential operations, evaluate storage technologies based on workload requirements, and build the skills needed to select and implement effective database solutions for big data environments.

Inclus

6 vidéos3 lectures8 devoirs

Working with Data Formats (Structured, Semi-structured, Unstructured) helps learners build a clear understanding of how different data formats function within big data systems and why format selection matters for performance, storage, and analytical success. The module introduces structured formats, such as CSV and TSV, and explores flexible semi-structured formats, including JSON and XML. It also examines optimized file types, including Parquet, Avro, and ORC, that support large-scale analytics. Learners practice transforming data between formats using Azure Data Factory, working with nested structures, applying schema inference, and evaluating performance trade-offs across file types. Through demonstrations, code exercises, and hands-on labs, this module equips learners to select, convert, and manage data formats effectively for diverse big data scenarios.

Inclus

6 vidéos3 lectures8 devoirs

Data Lakes and Data Warehouses Implementation guides learners through the architectural foundations and hands-on skills needed to build modern analytical environments. The module explores the purpose and structure of data lakes, highlighting the zones of raw, cleaned, enriched, and curated data, and demonstrates how thoughtful design supports flexibility, governance, and large-scale analytics. Learners also study core data warehouse concepts, including dimensional modeling, star schemas, and data marts, to understand how structured storage enables high-performance querying. Through practical work with Azure Data Lake Storage Gen2 and Azure Synapse Analytics, learners design zone architectures, implement dimensional models, configure SQL pools, and apply best practices for partitioning, distribution, and optimization. By the end, they gain the ability to organize, govern, and integrate data across both lake and warehouse environments, supporting scalable, enterprise-ready analytics.

Inclus

6 vidéos3 lectures7 devoirs

Building Data Pipelines (ETL/ELT with Azure Data Factory) equips learners with the skills to design, implement, and manage scalable data integration workflows using modern, cloud-native approaches. The module examines the differences between ETL and ELT, helping learners understand when each methodology delivers the best performance, flexibility, and cost efficiency. Learners gain hands-on experience with Azure Data Factory, configuring linked services, datasets, activities, and core orchestration components, and practice building both simple and advanced pipelines. The module also introduces transformation logic, control flow patterns, parameterization, and error handling strategies that support production-ready data engineering solutions. Through walkthroughs, labs, code exercises, and scenario-based decisions, learners learn to monitor pipelines, troubleshoot failures, and design reliable data workflows that support enterprise-scale analytics.

Inclus

6 vidéos3 lectures9 devoirs

Batch and Real-Time Processing Fundamentals introduces learners to the core processing models that power modern big data systems, helping them understand when each approach delivers the most value. The module explores batch architectures, scheduling methods, and optimization strategies for large-scale historical processing, while also examining real-time stream processing concepts, including event handling, latency trade-offs, and throughput requirements. Learners gain hands-on experience implementing both models—building batch workflows with Azure Data Factory and configuring streaming pipelines using Event Hubs and Stream Analytics. Through architectural analysis, code exercises, and practical labs, learners learn to evaluate business needs, select the right processing approach, and design hybrid systems that combine batch and streaming for comprehensive analytics.

Inclus

6 vidéos3 lectures9 devoirs

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

 Microsoft
278 Cours2 140 106 apprenants

Offert par

Microsoft

En savoir plus sur Data Analysis

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.