Microsoft
Data Processing, Exploratory Analysis and Visualization

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Microsoft

Data Processing, Exploratory Analysis and Visualization

 Microsoft

Instructeur : Microsoft

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
5 heures à compléter
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
5 heures à compléter
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Power BI
  • Catégorie : Apache Spark
  • Catégorie : Data Visualization Software
  • Catégorie : Big Data
  • Catégorie : Dashboard
  • Catégorie : Data Transformation
  • Catégorie : Data Processing
  • Catégorie : Scalability
  • Catégorie : PySpark
  • Catégorie : Databricks
  • Catégorie : Distributed Computing

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 2 modules dans ce cours

Distributed Computing and MapReduce Concepts explores the foundational principles that enable modern organizations to process massive datasets that have outgrown the limits of single-machine computing. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine how data is broken into parallel tasks and executed across clusters of machines, how the Map, shuffle, and Reduce phases work together, and how common MapReduce patterns—such as counting, filtering, joining, and aggregation—solve practical big data problems efficiently and at scale.

Inclus

3 lectures4 devoirs

Apache Spark Architecture and Fundamentals provides a comprehensive introduction to the distributed processing engine that revolutionized big data analytics by overcoming traditional MapReduce limitations. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine Spark's core components, including the driver, executors, and cluster manager, explore how in-memory processing delivers dramatic performance improvements, and learn to configure and manage Spark clusters and applications for efficient large-scale data processing.

Inclus

2 lectures1 devoir

Instructeur

 Microsoft
269 Cours2 122 228 apprenants

Offert par

Microsoft

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions

¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.