This course introduces distributed computing frameworks and big data visualization techniques. Learners will explore MapReduce, work with Apache Spark, implement transformations with PySpark, and use Spark SQL for large-scale analysis. The course concludes with building compelling dashboards and reports using Power BI for actionable business insights.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Compétences que vous acquerrez
- Catégorie : Power BI
- Catégorie : Apache Spark
- Catégorie : Data Visualization Software
- Catégorie : Big Data
- Catégorie : Dashboard
- Catégorie : Data Transformation
- Catégorie : Data Processing
- Catégorie : Scalability
- Catégorie : PySpark
- Catégorie : Databricks
- Catégorie : Distributed Computing
Détails à connaître

Ajouter à votre profil LinkedIn
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
Distributed Computing and MapReduce Concepts explores the foundational principles that enable modern organizations to process massive datasets that have outgrown the limits of single-machine computing. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine how data is broken into parallel tasks and executed across clusters of machines, how the Map, shuffle, and Reduce phases work together, and how common MapReduce patterns—such as counting, filtering, joining, and aggregation—solve practical big data problems efficiently and at scale.
Inclus
3 lectures4 devoirs
Apache Spark Architecture and Fundamentals provides a comprehensive introduction to the distributed processing engine that revolutionized big data analytics by overcoming traditional MapReduce limitations. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine Spark's core components, including the driver, executors, and cluster manager, explore how in-memory processing delivers dramatic performance improvements, and learn to configure and manage Spark clusters and applications for efficient large-scale data processing.
Inclus
2 lectures1 devoir
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.





