This foundational course introduces learners to key concepts in big data, cloud computing principles, and Microsoft Azure technologies. Learners will understand the characteristics of big data, explore the big data ecosystem within Azure, and gain practical experience with key tools, including Azure services and Databricks. The course includes cost comparisons between major cloud providers and introduces key concepts in cluster computing.

Acquérir des compétences de haut niveau avec Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Fundamentals of Big Data with Microsoft Azure
Ce cours fait partie de Microsoft Big Data Management and Analytics Certificat Professionnel

Instructeur : Microsoft
Inclus avec
Expérience recommandée
Ce que vous apprendrez
- Manage big data storage and pipelines with Azure services.
- Process and analyze large datasets using Apache Spark and Databricks.
Compétences que vous acquerrez
- Catégorie : Databricks
- Catégorie : Analytics
- Catégorie : Data Lakes
- Catégorie : Cloud Computing
- Catégorie : Public Cloud
- Catégorie : Scalability
- Catégorie : Real Time Data
- Catégorie : Distributed Computing
- Catégorie : Big Data
- Catégorie : Data Storage Technologies
- Catégorie : Azure Synapse Analytics
- Catégorie : Data Processing
- Catégorie : Cloud Computing Architecture
- Catégorie : Microsoft Azure
Détails à connaître

Ajouter à votre profil LinkedIn
janvier 2026
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise en Data Analysis
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable auprès de Microsoft

Il y a 5 modules dans ce cours
Introduction to Big Data Concepts introduces learners to the core ideas that define big data and shape today’s data-driven landscape. The module explores the Five V’s—volume, velocity, variety, veracity, and value—and demonstrates how each one influences technology choices, business opportunities, and analytical approaches. Learners compare traditional data practices with modern big data workloads, examine the challenges and opportunities across various industries, and review real-world examples of how organizations apply big data to solve complex problems. Through videos, readings, case studies, interactive dialogues, and scenario-based assessments, this module builds a strong foundation for recognizing big data patterns and understanding how they enable new business capabilities.
Inclus
3 vidéos4 lectures5 devoirs
Cloud Computing for Big Data guides learners through the essential cloud concepts that power modern data processing, helping them understand how cloud models, deployment options, and platform capabilities support large-scale workloads. The module explores Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) within real-world big data scenarios, comparing these approaches to traditional on-premises solutions to highlight the cost, scalability, and operational trade-offs. Learners investigate cloud-native features, including elasticity, managed services, global distribution, and automated scaling, and then apply these concepts to evaluate workload requirements and design effective architectures. Through videos, readings, hands-on labs, and coach-led discussions, the module equips learners to make informed decisions about cloud adoption and build scalable, resilient big data solutions.
Inclus
6 vidéos4 lectures6 devoirs
Microsoft Azure Platform for Big Data equips learners with the practical skills needed to work confidently within Microsoft’s cloud ecosystem for large-scale data solutions. The module introduces key Azure services, demonstrates how to navigate the Azure portal, and guides learners through creating and managing resources that support big data workloads. Learners explore major Microsoft tools, including Azure Synapse Analytics, Azure Data Lake Storage, Azure Data Factory, and Microsoft Fabric, building an understanding of how these services connect to form an integrated analytics platform. Through hands-on labs, guided videos, and scenario-based activities, this module helps learners apply core Azure capabilities, effectively organize cloud resources, and select the right services to meet real-world big data requirements.
Inclus
6 vidéos4 lectures8 devoirs
Introduction to Azure Databricks and Clusters helps learners build a practical understanding of distributed computing and the core technologies that power large-scale data processing. The module introduces the principles of cluster computing, demonstrating how distributed systems allocate workloads across multiple machines to enhance speed, resilience, and efficiency. Learners explore Azure Databricks as a unified analytics platform, set up workspaces, run basic PySpark operations, and learn how Databricks integrates with Azure services. The module also guides learners through configuring and managing clusters, selecting compute options, applying auto-scaling, and optimizing performance and cost. Through hands-on labs, code exercises, demonstrations, and scenario-based activities, learners gain the foundational skills needed to work confidently with Databricks and cluster-based big data solutions.
Inclus
6 vidéos3 lectures9 devoirs
Cost Management and Cloud Provider Comparisons gives learners the tools to understand, predict, and optimize the costs of big data workloads in the cloud. The module breaks down Azure’s pricing structures for compute, storage, and consumption-based models, while teaching learners how to estimate expenses using calculators and automation tools. It also provides a clear framework for comparing pricing across Azure, AWS, and Google Cloud, highlighting service equivalencies, hidden costs, and strategic considerations that extend beyond price alone. Learners explore practical optimization techniques—such as auto-scaling, lifecycle policies, and reserved instance planning—and apply them to real scenarios to create cost-effective designs. Through demonstrations, hands-on labs, and structured analysis activities, this module helps learners build the confidence and skill set needed to manage cloud spend responsibly and design efficient big data solutions.
Inclus
6 vidéos3 lectures10 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Data Analysis
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuit
Statut : Essai gratuitMicrosoft
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Plus de questions
Aide financière disponible,
¹ Certains travaux de ce cours sont notés par l'IA. Pour ces travaux, vos Données internes seront utilisées conformément à Notification de confidentialité de Coursera.




