筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“machine learning foundations” 的结果
- 状态:新状态:免费试用
Coursera
您将获得的技能: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
- 状态:免费试用
University of Washington
您将获得的技能: 机器学习, 回归分析, 人工智能, 分类与回归树 (CART), 监督学习, 文本挖掘, Python 程序设计, 应用机器学习, 自然语言处理, 数据挖掘, 功能工程, 预测建模, 图像分析, 计算机视觉, 深度学习
- 状态:新状态:免费试用
您将获得的技能: Generative AI, Supervised Learning, Generative Model Architectures, Unsupervised Learning, Large Language Modeling, Time Series Analysis and Forecasting, Exploratory Data Analysis, LLM Application, Applied Machine Learning, Data Collection, Machine Learning Algorithms, OpenAI, Feature Engineering, Data Ethics, Dimensionality Reduction, MLOps (Machine Learning Operations), Machine Learning, Multimodal Prompts, Data Processing, Network Architecture
- 状态:预览
National Taiwan University
您将获得的技能: Supervised Learning, Machine Learning, Statistical Machine Learning, Classification And Regression Tree (CART), Artificial Intelligence and Machine Learning (AI/ML), Theoretical Computer Science, Mathematical Modeling, Probability & Statistics, Regression Analysis, Algorithms
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning
DeepLearning.AI
您将获得的技能: 数据管道, 机器学习, 持续监测, MLOps(机器学习 Operator), 应用程序部署, 软件开发生命周期, 数据质量, 持续部署, 功能工程, 数据驱动的决策制定, 应用机器学习, 数据验证
是什么让您今天来到 Coursera?
- 状态:新状态:免费试用
University of Pittsburgh
您将获得的技能: Statistical Analysis, NumPy, Probability Distribution, Matplotlib, Statistics, Pandas (Python Package), Data Science, Probability & Statistics, Probability, Statistical Modeling, Predictive Modeling, Data Analysis, Linear Algebra, Predictive Analytics, Statistical Methods, Mathematics and Mathematical Modeling, Applied Mathematics, Python Programming, Machine Learning, Logical Reasoning
- 状态:免费试用
多位教师
您将获得的技能: 机器学习, 数据伦理, 监督学习, 分类与回归树 (CART), 无监督学习, 人工智能, 决策树学习, 张力流, 负责任的人工智能, NumPy, 强化学习, 随机森林算法, Python 程序设计, 预测建模, 应用机器学习, Jupyter, 功能工程, 人工智能和机器学习(AI/ML), Scikit-learn (机器学习库), 深度学习
- 状态:新状态:预览
您将获得的技能: Reinforcement Learning, Dimensionality Reduction, PyTorch (Machine Learning Library), Deep Learning, Generative AI, Pandas (Python Package), Scikit Learn (Machine Learning Library), Python Programming, Machine Learning, Artificial Neural Networks, Data Processing, Natural Language Processing, Feature Engineering, Predictive Modeling, Supervised Learning, Unsupervised Learning, Data Transformation, NumPy
- 状态:免费试用
Imperial College London
您将获得的技能: 概率与统计, 线性代数, 机器学习, 回归分析, Algorithm, 数据操作, 降维, Python 程序设计, NumPy, 人工神经网络, 统计, 机器学习算法, 微积分, 应用数学, Jupyter, 衍生产品, 高等数学, 数据科学, 统计分析
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 线性代数, 概率与统计, 机器学习, A/B 测试, Machine Learning 方法, 数学建模, 数值分析, 数据转换, 统计推理, 抽样(统计), NumPy, 贝叶斯统计, 概率, 降维, 应用数学, 微积分, 统计假设检验, 描述性统计, 概率分布, 统计分析
- 状态:免费试用
Johns Hopkins University
您将获得的技能: Responsible AI, Data Ethics, Artificial Neural Networks, Deep Learning, Machine Learning Algorithms, Reinforcement Learning, Generative AI, Debugging, Artificial Intelligence, Unsupervised Learning, Machine Learning, Computer Vision, Image Analysis, Artificial Intelligence and Machine Learning (AI/ML), Machine Learning Methods, Applied Machine Learning, Bayesian Statistics, Network Architecture, Linear Algebra, Markov Model
与 machine learning foundations 相关的搜索
总之,以下是 10 最受欢迎的 machine learning foundations 课程
- Foundations of Machine Learning: Coursera
- 机器学习基础:案例研究法: University of Washington
- Machine Learning with Scikit-learn, PyTorch & Hugging Face: Coursera
- 機器學習基石上 (Machine Learning Foundations)---Mathematical Foundations: National Taiwan University
- The Nuts and Bolts of Machine Learning: Google
- 生产中的 Machine Learning: DeepLearning.AI
- Mathematical Foundations for Data Science and Analytics: University of Pittsburgh
- 机器学习: DeepLearning.AI
- Machine Learning with PyTorch and Scikit-Learn: Packt
- 机器学习数学: Imperial College London