Decision Tree Learning

决策树学习是一种近似离散值目标函数的方法,其中学习到的函数用决策树表示。Coursera 的决策树学习目录将引导您了解这种广泛应用于机器学习和数据挖掘的监督学习方法。您将学习如何构建、可视化和优化修剪决策树,以进行预测和分类。本目录还将向您介绍决策树学习中的属性选择措施、过拟合、随机性和Ensemble Learning方法。在掌握这项技能的过程中,您将具备使用决策树学习算法解决金融、医疗保健和自然语言处理等领域复杂问题的能力。
13凭据
53门课程

最受欢迎

当前趋势

最新发布

筛选依据

主题
必需的

语言
必需的

在整个课程(说明和评估)中使用的语言。

了解产品
必需的

通过实践教程在 2 小时内掌握与工作相关的技能。
通过已评分作业、视频和论坛向顶级授课教师学习。
在交互式实践环境中学习新工具或新技能。
通过完成一系列课程和项目,深入学习学科知识。
获得行业领导者颁发的职业证书,展示您学到的专业知识。

级别
必需的

课程长度
必需的

字幕
必需的

教师
必需的

“decision tree learning” 的结果

  • 状态:免费试用

    多位教师

    您将获得的技能: 数据伦理, 机器学习, 分类与回归树 (CART), 人工智能, 预测建模, 人工智能和机器学习(AI/ML), 无监督学习, NumPy, Python 程序设计, 强化学习, 随机森林算法, 应用机器学习, 决策树学习, 负责任的人工智能, Jupyter, 功能工程, 监督学习, 深度学习, 张力流, Scikit-learn (机器学习库)

  • 状态:新
    状态:免费试用

    您将获得的技能: Responsible AI, MLOps (Machine Learning Operations), Artificial Intelligence and Machine Learning (AI/ML), Jenkins, CI/CD, Java, Continuous Deployment, Java Programming, Artificial Intelligence, Apache Spark, Applied Machine Learning, Decision Tree Learning, Deep Learning, Machine Learning, Fraud detection, Spring Boot, Natural Language Processing, Regression Analysis, Reinforcement Learning, Debugging

  • 状态:新

    您将获得的技能: Feature Engineering, Supervised Learning, Exploratory Data Analysis, Machine Learning Algorithms, Applied Machine Learning, Decision Tree Learning, Predictive Modeling, Data Analysis, Scikit Learn (Machine Learning Library), Machine Learning, Classification And Regression Tree (CART), Statistical Modeling, Pandas (Python Package), NumPy, Data Cleansing, Data Manipulation

  • 状态:新
    状态:预览

    您将获得的技能: Supervised Learning, Random Forest Algorithm, Applied Machine Learning, Data Processing, Classification And Regression Tree (CART), Decision Tree Learning, Feature Engineering, Machine Learning Algorithms, Predictive Modeling, Performance Testing, Data Analysis, Scikit Learn (Machine Learning Library), Python Programming

  • 状态:新
    状态:预览

    您将获得的技能: Exploratory Data Analysis, Predictive Modeling, Risk Modeling, Classification And Regression Tree (CART), Decision Tree Learning, Credit Risk, Predictive Analytics, Random Forest Algorithm, Data Processing, Feature Engineering, Financial Modeling, Data Manipulation, Data Analysis, Applied Machine Learning, Scikit Learn (Machine Learning Library), Pandas (Python Package), Machine Learning Methods, Supervised Learning, Performance Metric, Performance Tuning

  • 状态:免费试用

    您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning

是什么让您今天来到 Coursera?

  • 状态:新
    状态:预览

    您将获得的技能: Classification And Regression Tree (CART), Predictive Analytics, Decision Tree Learning, Data-Driven Decision-Making, Marketing Analytics, Data Analysis, Feature Engineering, Statistical Modeling, Financial Forecasting, Marketing, Supervised Learning, Data Cleansing, Machine Learning Methods, Data Transformation, Program Standards

  • 状态:免费试用

    Johns Hopkins University

    您将获得的技能: PyTorch (Machine Learning Library), Unsupervised Learning, Computer Vision, Machine Learning Algorithms, Applied Machine Learning, Image Analysis, Dimensionality Reduction, Supervised Learning, Reinforcement Learning, Feature Engineering, Regression Analysis, Data Cleansing, Machine Learning, Data Mining, Scikit Learn (Machine Learning Library), Statistical Machine Learning, Advanced Analytics, Deep Learning, Artificial Neural Networks, Decision Tree Learning

  • 状态:免费试用

    University of Michigan

    您将获得的技能: 机器学习, 回归分析, 预测建模, 无监督学习, 监督学习, Python 程序设计, 随机森林算法, 降维, 功能工程, 应用机器学习, 决策树学习, Scikit-learn (机器学习库)

  • 状态:预览

    您将获得的技能: Supervised Learning, Decision Tree Learning, Applied Machine Learning, Data Processing, Predictive Modeling, Statistical Machine Learning, Random Forest Algorithm, Feature Engineering, SAS (Software), Machine Learning, Data Analysis, Artificial Neural Networks, Data Cleansing, Predictive Analytics, No-Code Development, Statistical Programming, Performance Tuning

  • 状态:免费试用

    您将获得的技能: 机器学习, 预测建模, 分类与回归树 (CART), 监督学习, 回归分析, 无监督学习, 统计建模, 降维, 决策树学习, 应用机器学习, 功能工程, Scikit-learn (机器学习库)

  • 状态:免费试用

    University of Colorado Boulder

    您将获得的技能: 机器学习, Matplotlib, 分类与回归树 (CART), 数据科学, 预测建模, 无监督学习, 人工智能和机器学习(AI/ML), 随机森林算法, 机器学习算法, 计算机视觉, Python 程序设计, 应用机器学习, 降维, 数学建模, 深度学习, 图像分析, 决策树学习, Scikit-learn (机器学习库), 监督学习, Keras(神经网络库)

是什么让您今天来到 Coursera?

主要合作伙伴

  • SAS
  • University of Colorado Boulder
  • DeepLearning.AI
  • EDUCBA
  • IBM
  • Johns Hopkins University
  • Duke University
  • CertNexus