University of Glasgow
Informed Clinical Decision Making using Deep Learning 专项课程
University of Glasgow

Informed Clinical Decision Making using Deep Learning 专项课程

Apply Deep Learning in Electronic Health Records. Understand the road path from data mining of clinical databases to clinical decision support systems

Fani Deligianni

位教师:Fani Deligianni

2,624 人已注册

包含在 Coursera Plus

深入学习学科知识
4.6

(21 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
4.6

(21 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Extract and preprocess data from complex clinical databases

  • Apply deep learning in Electronic Health Records

  • Imputation of Electronic Health Records and data encodings

  • Explainable, fair and privacy-preserved Clinical Decision Support Systems

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 University of Glasgow 获得职业证书

专业化 - 5门课程系列

您将学到什么

  • Understand the Schema of publicly available EHR databases (MIMIC-III)

  • Recognise the International Classification of Diseases (ICD) use

  • Extract and visualise descriptive statistics from clinical databases

  • Understand and extract key clinical outcomes such as mortality and stay of length

您将获得的技能

类别:Predictive Analytics
类别:Clinical Data Management
类别:Interoperability
类别:ICD Coding (ICD-9/ICD-10)
类别:Machine Learning
类别:Descriptive Statistics
类别:Clinical Informatics
类别:Health Informatics
类别:Analytics
类别:SQL
类别:Medical Records
类别:Precision Medicine
类别:Patient Flow
类别:Electronic Medical Record
类别:Relational Databases
类别:Data Mining
类别:Exploratory Data Analysis
类别:Descriptive Analytics
类别:Predictive Modeling
类别:Database Design

您将学到什么

  • Train deep learning architectures such as Multi-layer perceptron, Convolutional Neural Networks and Recurrent Neural Networks for classification

  • Validate and compare different machine learning algorithms

  • Preprocess Electronic Health Records and represent them as time-series data

  • Imputation strategies and data encodings

您将获得的技能

类别:Deep Learning
类别:Data Cleansing
类别:Data Processing
类别:Health Informatics
类别:Predictive Modeling
类别:Artificial Neural Networks
类别:Machine Learning Methods
类别:Electocardiography
类别:Electronic Medical Record
类别:Feature Engineering
类别:Time Series Analysis and Forecasting

您将学到什么

  • Program global explainability methods in time-series classification

  • Program local explainability methods for deep learning such as CAM and GRAD-CAM

  • Understand axiomatic attributions for deep learning networks

  • Incorporate attention in Recurrent Neural Networks and visualise the attention weights

您将获得的技能

类别:Deep Learning
类别:Healthcare Ethics
类别:Artificial Neural Networks
类别:Time Series Analysis and Forecasting
类别:Data Processing
类别:Image Analysis
类别:Machine Learning
类别:Applied Machine Learning
类别:Machine Learning Algorithms
类别:Responsible AI

您将学到什么

  • Evaluating Clinical Decision Support Systems

  • Bias, Calibration and Fairness in Machine Learning Models

  • Decision Curve Analysis and Human-Centred Clinical Decision Support Systems

  • Privacy concerns in Clinical Decision Support Systems

您将获得的技能

类别:Data Ethics
类别:Responsible AI
类别:Deep Learning
类别:Health Informatics
类别:Information Privacy
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Predictive Modeling
类别:Decision Support Systems
类别:Data Security
类别:Data Validation
类别:Machine Learning
类别:Human Centered Design
类别:Verification And Validation
Capstone Assignment - CDSS 5

Capstone Assignment - CDSS 5

第 5 门课程2小时

您将学到什么

您将获得的技能

类别:Artificial Neural Networks
类别:Data Mining
类别:Deep Learning
类别:Feature Engineering
类别:Applied Machine Learning
类别:Predictive Modeling
类别:Responsible AI
类别:Machine Learning
类别:Artificial Intelligence
类别:Time Series Analysis and Forecasting
类别:Clinical Data Management
类别:Health Informatics

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Fani Deligianni
University of Glasgow
5 门课程5,880 名学生

提供方

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题