筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“machine learning algorithms” 的结果
- 状态:免费试用
Alberta Machine Intelligence Institute
您将获得的技能: 机器学习算法, 数据伦理, 监督学习, 分类与回归树 (CART), 机器学习, MLOps(机器学习 Operator), 测试数据, 数据清理, 功能工程, 数据质量, 数据处理, 数据验证, 业务运营, 项目管理, 道德标准与行为, 负责任的人工智能, 产品生命周期管理, 应用机器学习, Machine Learning 方法, Jupyter
- 状态:新状态:免费试用
您将获得的技能: Data Science, Unsupervised Learning, Exploratory Data Analysis, Probability & Statistics, Machine Learning Algorithms, Applied Machine Learning, Classification And Regression Tree (CART), Data Analysis, Python Programming, Random Forest Algorithm, Dimensionality Reduction, Predictive Modeling, NumPy, Regression Analysis, Statistical Analysis, Data Processing, Deep Learning, Pandas (Python Package), Data Visualization, Data Manipulation
- 状态:新状态:预览
您将获得的技能: Reinforcement Learning, Dimensionality Reduction, PyTorch (Machine Learning Library), Deep Learning, Generative AI, Pandas (Python Package), Scikit Learn (Machine Learning Library), Python Programming, Machine Learning, Artificial Neural Networks, Data Processing, Natural Language Processing, Feature Engineering, Predictive Modeling, Supervised Learning, Unsupervised Learning, Data Transformation, NumPy
- 状态:新状态:免费试用
您将获得的技能: Apache Spark, Keras (Neural Network Library), Deep Learning, Tensorflow, A/B Testing, Big Data, Data Ethics, Applied Machine Learning, Data Processing, Machine Learning Software, Artificial Neural Networks, Machine Learning Algorithms, Data Cleansing, Machine Learning, MLOps (Machine Learning Operations), Supervised Learning, Artificial Intelligence, Statistical Hypothesis Testing, Dimensionality Reduction, Reinforcement Learning
- 状态:新状态:免费试用
Coursera
您将获得的技能: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
- 状态:免费试用
多位教师
您将获得的技能: 决策树学习, 分类与回归树 (CART), 人工智能和机器学习(AI/ML), 监督学习, 机器学习, NumPy, Python 程序设计, 强化学习, 随机森林算法, 数据伦理, 人工智能, 应用机器学习, 负责任的人工智能, 深度学习, 无监督学习, 张力流, Scikit-learn (机器学习库), 功能工程, 预测建模, Jupyter
是什么让您今天来到 Coursera?
- 状态:免费试用
您将获得的技能: Feature Engineering, Applied Machine Learning, Advanced Analytics, Machine Learning, Unsupervised Learning, Workflow Management, Data Ethics, Supervised Learning, Data Validation, Classification And Regression Tree (CART), Random Forest Algorithm, Decision Tree Learning, Python Programming, Performance Tuning
- 状态:预览
Sungkyunkwan University
您将获得的技能: Machine Learning Algorithms, Decision Tree Learning, Classification And Regression Tree (CART), Unsupervised Learning, Machine Learning, Supervised Learning, Python Programming, Algorithms, Linear Algebra, Bayesian Statistics, Probability
- 状态:免费试用
您将获得的技能: Unsupervised Learning, Generative AI, Large Language Modeling, Supervised Learning, Deep Learning, Applied Machine Learning, Artificial Intelligence and Machine Learning (AI/ML), Reinforcement Learning, Statistical Machine Learning, Predictive Modeling, Machine Learning Algorithms, Artificial Neural Networks, Feature Engineering, Unstructured Data, Dimensionality Reduction, Performance Metric
- 状态:免费试用
您将获得的技能: 决策树学习, 回归分析, 分类与回归树 (CART), 监督学习, 统计建模, 机器学习, 无监督学习, 降维, Scikit-learn (机器学习库), 功能工程, 预测建模, 应用机器学习
- 状态:免费试用
Alberta Machine Intelligence Institute
您将获得的技能: 机器学习算法, 回归分析, 分类与回归树 (CART), 机器学习, 业务解决方案, 监督学习, Python 程序设计, 数据处理, 性能分析, 性能指标, Scikit-learn (机器学习库), 功能工程, 应用机器学习, Jupyter
- 状态:免费试用
University of Washington
您将获得的技能: 机器学习算法, 贝叶斯统计, 回归分析, 分类与回归树 (CART), 监督学习, 机器学习, 统计建模, 文本挖掘, 计算机视觉, 无监督学习, 人工智能, 大数据, 功能工程, 预测建模, 统计机器学习, 数据挖掘, 图像分析, 深度学习, 预测分析, 应用机器学习
与 machine learning algorithms 相关的搜索
总之,以下是 10 最受欢迎的 machine learning algorithms 课程
- 机器学习真实世界中的算法: Alberta Machine Intelligence Institute
- Mastering Machine Learning Algorithms using Python: Packt
- Machine Learning with PyTorch and Scikit-Learn: Packt
- Advanced Machine Learning, Big Data, and Deep Learning: Packt
- Foundations of Machine Learning: Coursera
- 机器学习: DeepLearning.AI
- The Nuts and Bolts of Machine Learning: Google
- Machine Learning Algorithms: Sungkyunkwan University
- AI and Machine Learning Algorithms and Techniques: Microsoft
- 使用 Python 进行机器学习: IBM