Starweaver
Threat Hunting Techniques

通过 Coursera Plus 获取 10,000 多门课程的 Accessibility

Starweaver

Threat Hunting Techniques

Archan Choudhury
Starweaver

位教师:Archan Choudhury

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

8 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Explore the threat hunting lifecycle and how ML augments hypothesis-driven investigation.

  • Analyze raw log data by cleaning, enriching, and visualizing it using Pandas, Seaborn, and Matplotlib in Jupyter.

  • Apply anomaly detection techniques such as Isolation Forest and DBSCAN on telemetry data.

  • Design and execute a complete ML-based hunt in Splunk and Jupyter to detect suspicious behavior.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

4 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有6个模块

In this course, you’ll learn how to combine threat hunting fundamentals with data science techniques to uncover hidden threats that traditional security tools often miss. You’ll work with real log data, build hunting hypotheses, and apply machine learning models to detect anomalies, behavioral patterns, and subtle signs of compromise across enterprise environments. Through guided instruction, hands-on labs, and practical examples using Splunk and Jupyter Notebooks, you’ll develop the skills to operationalize ML-powered threat hunts, strengthen detection workflows, and respond more effectively to advanced, evasive attackers.

涵盖的内容

1个视频1篇阅读材料

In this module, you’ll explore what threat hunting really means and why it has become essential for modern security teams. We’ll break down how hunters move beyond automated tools to search for hidden or unusual activity that may signal an active compromise. You’ll learn the core concepts, terminology, and frameworks that shape effective hunting, along with the mindset of assuming adversaries may already be inside your environment. By the end, you’ll understand why proactive hunting is critical for stopping attacks early, reducing impact, and strengthening your overall detection strategy.

涵盖的内容

10个视频1篇阅读材料1个作业1次同伴评审1个讨论话题

In this module, you’ll learn how data science strengthens modern threat hunting by helping you make sense of large, noisy security datasets. We’ll walk through the essentials of cleaning and shaping log data, visualizing behaviors, and building simple machine learning models to spot anomalies. You’ll get hands-on practice with Python tools like pandas, scikit-learn, and Jupyter Notebooks, and see how these techniques feed into SIEM platforms such as Splunk and Elastic. By the end, you’ll understand how data science supports faster detection, smarter investigations, and repeatable, automated hunting workflows.

涵盖的内容

10个视频1篇阅读材料1个作业1次同伴评审1个讨论话题

In this module, you’ll explore the unsupervised machine learning techniques that power modern anomaly detection in security environments. We’ll break down how models like Isolation Forest, DBSCAN, Z-Score Analysis, and One-Class SVM uncover unusual patterns without relying on labeled data. You’ll practice applying these algorithms to real-world scenarios such as suspicious logins, odd network traffic, and unusual system behavior. By the end, you’ll understand how these ML methods help you surface hidden threats that traditional rules often overlook.

涵盖的内容

10个视频1篇阅读材料1个作业1次同伴评审1个讨论话题

In this module, you’ll learn how to turn machine learning models and analytical techniques into practical, repeatable threat-hunting workflows. We’ll walk through how to ingest and prepare data in Splunk, write SPL for clean feature inputs, and build detection notebooks that analyze and score events in Jupyter. You’ll also see how both platforms work together to run full end-to-end hunts, from data extraction to investigation. By the end, you’ll be able to operationalize ML-driven detections and apply them directly to real security telemetry.

涵盖的内容

10个视频1篇阅读材料1个作业1次同伴评审1个讨论话题

In this wrap-up module, you’ll bring all your threat-hunting skills together by building a complete anomaly-based detection workflow using Splunk and Jupyter. This final project puts your log analysis, SPL queries, and ML techniques into practice, showing your ability to uncover hidden threats, visualize suspicious behavior, and map findings to ATT&CK. It’s your chance to demonstrate real-world readiness and apply everything you’ve learned across the course.

涵盖的内容

1个视频1次同伴评审

位教师

Archan Choudhury
Starweaver
0 门课程0 名学生
Starweaver
Starweaver
458 门课程904,014 名学生

提供方

Starweaver

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题