Duke University
Data Visualization and Modeling in Python
Duke University

Data Visualization and Modeling in Python

Genevieve M. Lipp
Nick Eubank
Kyle Bradbury

位教师:Genevieve M. Lipp

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Create professional visualizations for many kinds of data Utilize Classification algorithms to make predictions using a dataset

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

4 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Programming for Python Data Science: Principles to Practice 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

In this module, you will learn about plotting in Python—an important technique for exploring a dataset, and an indispensable tool for communicating insights. We’ll learn to make all the most common types of plots used in data science including the basics like line, bar, and scatter plots, as well as more advanced plot types including histograms and heatmaps. We’ll learn both how to make these plots and how they can be customized for your needs using a core plotting library for python, matplotlib, which serves as the backbone for many python plotting tools. You’ll learn how to create professional, accessible, and information-rich plots, which you will leverage to quickly identify trends in data that would be difficult to otherwise recognize. We've also included some optional additional readings if you want to further enhance your learning!

涵盖的内容

1个视频30篇阅读材料1个作业5个非评分实验室

This module, you will learn the basics of how to use code to make predictions based on data. After discussing what prediction is, you’ll learn to describe the concepts that underlie predictive algorithms within the context of the K-Nearest Neighbors (KNN) algorithm for both classification and regression. Additionally, you’ll learn to evaluate the accuracy of a predictive algorithm to assess its ability to generalize to new data. You will build your own KNN classification and regression algorithms from scratch and make predictions with each of them. At the end of this module, we’ll have a quiz to give you the opportunity to evaluate your understanding of predictive algorithms and reflect on your experience implementing your own.

涵盖的内容

1个视频7篇阅读材料1个作业5个非评分实验室

This module, you will learn how to describe the differences between prediction and inference, two key Data Science concepts. You’ll learn how to implement linear regressions — one of the most useful tools that data scientists have for inference and prediction — and other statistical models in Python. You’ll apply this knowledge by examining a dataset and regressing multiple variables on each other, and describing the insights on their relationships.

涵盖的内容

1个视频7篇阅读材料1个作业2个非评分实验室

This module, you’ll bring together the concepts and skills you’ve developed throughout the course to create a final project for your data science portfolio. You’ll recreate a now-famous data visualization that illustrates the relationship between the income of countries and their greenhouse gas emissions on a global scale. To do this, you’ll explore and prepare 4 datasets and merge them into a composite dataset that you’ll plot. Creating this merged dataset is an important step, and you’ll validate your merged dataset with a short quiz on the insights within. The end result of this effort will be a publication-quality plot that makes a compelling point about the relationship between emissions and income—an impactful visualization that showcases your growing programming skills for data science applications.

涵盖的内容

6篇阅读材料1个作业7个非评分实验室

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Genevieve M. Lipp
Duke University
11 门课程281,425 名学生

提供方

Duke University

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题