Microsoft
Data Processing, Exploratory Analysis and Visualization

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Microsoft

Data Processing, Exploratory Analysis and Visualization

 Microsoft

位教师: Microsoft

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累 Data Analysis 领域的专业知识

本课程是 Microsoft Big Data Management and Analytics 专业证书 专项课程的一部分
在注册此课程时,您还会同时注册此专业证书。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 通过 Microsoft 获得可共享的职业证书

该课程共有5个模块

Distributed Computing and MapReduce Concepts explores the foundational principles that enable modern organizations to process massive datasets that have outgrown the limits of single-machine computing. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine how data is broken into parallel tasks and executed across clusters of machines, how the Map, shuffle, and Reduce phases work together, and how common MapReduce patterns—such as counting, filtering, joining, and aggregation—solve practical big data problems efficiently and at scale.

涵盖的内容

2个视频3篇阅读材料8个作业

Apache Spark Architecture and Fundamentals provides a comprehensive introduction to the distributed processing engine that revolutionized big data analytics by overcoming traditional MapReduce limitations. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll examine Spark's core components, including the driver, executors, and cluster manager, explore how in-memory processing delivers dramatic performance improvements, and learn to configure and manage Spark clusters and applications for efficient large-scale data processing.

涵盖的内容

3篇阅读材料9个作业

Data Processing with PySpark RDDs and DataFrames focuses on practical data processing using PySpark's Python API for Apache Spark. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll implement data processing operations using both RDDs and DataFrames, develop transformation pipelines, apply common data cleaning and preparation techniques, and optimize PySpark code for better performance across enterprise-scale big data scenarios.

涵盖的内容

1个视频3篇阅读材料10个作业

Advanced Data Processing with Spark SQL introduces Spark SQL as a powerful interface for structured data processing in distributed environments. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll master SQL operations at scale, from basic queries to complex analytical operations, learn to create and manage temporary views and tables, and optimize query performance for production workloads that would overwhelm traditional database systems.

涵盖的内容

1个视频3篇阅读材料10个作业

Data Visualization for Big Data with Power BI introduces comprehensive visualization techniques specifically designed for big data environments using Microsoft Power BI. Through real-world examples, visual walkthroughs, hands-on labs, and guided design activities, you'll learn to connect Power BI to various big data sources, create effective visualizations for large datasets, build interactive dashboards that enable self-service analytics, and implement best practices for handling performance challenges when visualizing massive datasets.

涵盖的内容

1个视频3篇阅读材料10个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

 Microsoft
280 门课程2,143,613 名学生

提供方

Microsoft

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。