Microsoft
Fundamentals of Big Data with Microsoft Azure

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Microsoft

Fundamentals of Big Data with Microsoft Azure

 Microsoft

位教师: Microsoft

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • - Manage big data storage and pipelines with Azure services.

    - Process and analyze large datasets using Apache Spark and Databricks.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

January 2026

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累 Data Analysis 领域的专业知识

本课程是 Microsoft Big Data Management and Analytics 专业证书 专项课程的一部分
在注册此课程时,您还会同时注册此专业证书。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 通过 Microsoft 获得可共享的职业证书

该课程共有5个模块

Introduction to Big Data Concepts introduces learners to the core ideas that define big data and shape today’s data-driven landscape. The module explores the Five V’s—volume, velocity, variety, veracity, and value—and demonstrates how each one influences technology choices, business opportunities, and analytical approaches. Learners compare traditional data practices with modern big data workloads, examine the challenges and opportunities across various industries, and review real-world examples of how organizations apply big data to solve complex problems. Through videos, readings, case studies, interactive dialogues, and scenario-based assessments, this module builds a strong foundation for recognizing big data patterns and understanding how they enable new business capabilities.

涵盖的内容

3个视频4篇阅读材料5个作业

Cloud Computing for Big Data guides learners through the essential cloud concepts that power modern data processing, helping them understand how cloud models, deployment options, and platform capabilities support large-scale workloads. The module explores Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) within real-world big data scenarios, comparing these approaches to traditional on-premises solutions to highlight the cost, scalability, and operational trade-offs. Learners investigate cloud-native features, including elasticity, managed services, global distribution, and automated scaling, and then apply these concepts to evaluate workload requirements and design effective architectures. Through videos, readings, hands-on labs, and coach-led discussions, the module equips learners to make informed decisions about cloud adoption and build scalable, resilient big data solutions.

涵盖的内容

6个视频4篇阅读材料6个作业

Microsoft Azure Platform for Big Data equips learners with the practical skills needed to work confidently within Microsoft’s cloud ecosystem for large-scale data solutions. The module introduces key Azure services, demonstrates how to navigate the Azure portal, and guides learners through creating and managing resources that support big data workloads. Learners explore major Microsoft tools, including Azure Synapse Analytics, Azure Data Lake Storage, Azure Data Factory, and Microsoft Fabric, building an understanding of how these services connect to form an integrated analytics platform. Through hands-on labs, guided videos, and scenario-based activities, this module helps learners apply core Azure capabilities, effectively organize cloud resources, and select the right services to meet real-world big data requirements.

涵盖的内容

6个视频4篇阅读材料8个作业

Introduction to Azure Databricks and Clusters helps learners build a practical understanding of distributed computing and the core technologies that power large-scale data processing. The module introduces the principles of cluster computing, demonstrating how distributed systems allocate workloads across multiple machines to enhance speed, resilience, and efficiency. Learners explore Azure Databricks as a unified analytics platform, set up workspaces, run basic PySpark operations, and learn how Databricks integrates with Azure services. The module also guides learners through configuring and managing clusters, selecting compute options, applying auto-scaling, and optimizing performance and cost. Through hands-on labs, code exercises, demonstrations, and scenario-based activities, learners gain the foundational skills needed to work confidently with Databricks and cluster-based big data solutions.

涵盖的内容

6个视频3篇阅读材料9个作业

Cost Management and Cloud Provider Comparisons gives learners the tools to understand, predict, and optimize the costs of big data workloads in the cloud. The module breaks down Azure’s pricing structures for compute, storage, and consumption-based models, while teaching learners how to estimate expenses using calculators and automation tools. It also provides a clear framework for comparing pricing across Azure, AWS, and Google Cloud, highlighting service equivalencies, hidden costs, and strategic considerations that extend beyond price alone. Learners explore practical optimization techniques—such as auto-scaling, lifecycle policies, and reserved instance planning—and apply them to real scenarios to create cost-effective designs. Through demonstrations, hands-on labs, and structured analysis activities, this module helps learners build the confidence and skill set needed to manage cloud spend responsibly and design efficient big data solutions.

涵盖的内容

6个视频3篇阅读材料10个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

 Microsoft
278 门课程2,140,106 名学生

提供方

Microsoft

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。