Whizlabs
NVIDIA: Fundamentals of Machine Learning
Whizlabs

NVIDIA: Fundamentals of Machine Learning

2,858 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.4

(14 条评论)

中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
4.4

(14 条评论)

中级 等级

推荐体验

5 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the fundamentals of AI, ML, and Deep Learning, and their key differences.

  • Implement supervised learning techniques like classification and regression.

  • Apply clustering methods and time series analysis using ARIMA.

  • Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

Welcome to Week 1 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore ML Basics and Data Preprocessing, starting with an introduction to the course and best practices for exam success. We will define machine learning and set expectations for the Fundamentals of Machine Learning course. As we progress, we will differentiate between AI, Deep Learning, and Machine Learning and examine the types of machine learning. We will also cover the key steps involved in the machine-learning process. By the end of the week, we will dive into data preprocessing essentials, understanding its significance in machine learning workflows. A demo session on data preprocessing will provide hands-on insights into preparing data for model training.

涵盖的内容

9个视频2篇阅读材料2个作业1个讨论话题

Welcome to Week 2 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore the fundamentals of Supervised Machine Learning and Modal Evaluation, covering both Classification and Regression techniques. We will begin by understanding the principles of classification and regression models and their applications. As we progress, we will explore the process of model selection, training, and evaluation, followed by an in-depth discussion on evaluating classification models using the Confusion Matrix. Additionally, we will examine key evaluation metrics for both classification and regression models through theoretical explanations and hands-on demonstrations.

涵盖的内容

8个视频1篇阅读材料2个作业

Welcome to Week 3 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will cover Unsupervised Learning, Advanced Techniques & GPU Acceleration, starting with unsupervised learning techniques like KMeans, hierarchical, and density-based clustering, along with a hands-on demo. We'll also explore association rule mining and NVIDIA RAPIDS for GPU-accelerated workflows, including a demo. Additionally, we'll learn about cross-validation techniques (GridSearch and Randomized Search) with a practical demo and conclude with the ARIMA model for time series analysis, along with a hands-on demo.

涵盖的内容

11个视频3篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

授课教师评分
4.8 (7个评价)
Whizlabs Instructor
Whizlabs
132 门课程86,348 名学生

提供方

Whizlabs

从 Cloud Computing 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题