Whizlabs
Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs 专项课程
Whizlabs

Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs 专项课程

Launch career in NVIDIA Generative AI with LLMs. Master AI, ML, and Deep Learning using NVIDIA tools.

1,888 人已注册

包含在 Coursera Plus

深入学习学科知识
4.6

(17 条评论)

中级 等级

推荐体验

16 周 完成
在 3 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
4.6

(17 条评论)

中级 等级

推荐体验

16 周 完成
在 3 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Validating your expertise in generative AI, LLMs, and deep learning techniques.

  • Gaining industry recognition for your AI and machine learning skills.

  • Enhancing career opportunities in AI research, development, and cloud-based AI solutions.

  • Positioning yourself as a specialist in cutting-edge AI technologies.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Whizlabs 获得职业证书

专业化 - 6门课程系列

您将学到什么

  • Understand the fundamentals of AI, ML, and Deep Learning, and their key differences.

  • Implement supervised learning techniques like classification and regression.

  • Apply clustering methods and time series analysis using ARIMA.

  • Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows.

您将获得的技能

类别:Unsupervised Learning
类别:Supervised Learning
类别:Deep Learning
类别:Machine Learning
类别:Regression Analysis
类别:Predictive Modeling
类别:Classification And Regression Tree (CART)
类别:Data Processing
类别:Artificial Intelligence
类别:Time Series Analysis and Forecasting
类别:Feature Engineering
类别:Applied Machine Learning
类别:Statistical Analysis
NVIDIA: Fundamentals of Deep Learning

NVIDIA: Fundamentals of Deep Learning

第 2 门课程3小时

您将学到什么

  • Understand deep learning fundamentals, including neuron data processing and model training.

  • Implement multi-class classification and CNNs for image recognition tasks.

  • Apply transfer learning with pre-trained models to improve deep learning performance.

您将获得的技能

类别:Deep Learning
类别:Artificial Neural Networks
类别:Data Processing
类别:Supervised Learning
类别:PyTorch (Machine Learning Library)
类别:Computer Vision
类别:Machine Learning
类别:Tensorflow
类别:Network Architecture
类别:Machine Learning Algorithms
类别:Applied Machine Learning
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Image Analysis
类别:Linear Algebra

您将学到什么

  • Understand NLP fundamentals, key tasks, and real-world applications.

  • Implement NLP techniques, including tokenization, word embeddings, and sequence models.

  • Explore transformer architecture, self-attention mechanisms, and encoder-decoder models.

您将获得的技能

类别:Natural Language Processing
类别:Data Pipelines
类别:Data Processing
类别:Text Mining
类别:Unstructured Data
类别:Machine Learning Methods
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Deep Learning
类别:Machine Learning
类别:Artificial Neural Networks

您将学到什么

  • Understand the foundational concepts of LLMs, including NLP and training data.

  • Explore model optimization techniques like loss functions, alignment, and PEFT.

  • Implement deployment strategies for LLMs and monitor performance using ONNX.

您将获得的技能

类别:Large Language Modeling
类别:Generative AI
类别:Application Deployment
类别:Data Cleansing
类别:Tensorflow
类别:MLOps (Machine Learning Operations)
类别:Natural Language Processing
类别:Machine Learning
类别:Continuous Monitoring
类别:Deep Learning
类别:Machine Learning Methods
类别:PyTorch (Machine Learning Library)
类别:Prompt Engineering

您将学到什么

  • Understand prompt engineering and its role in LLM optimization.

  • Apply P-tuning and RAG architecture for improved model performance.

  • Utilize data analysis and visualization techniques for effective NLP tasks.

您将获得的技能

类别:Prompt Engineering
类别:Scatter Plots
类别:Histogram
类别:Data Analysis
类别:Data Visualization Software
类别:Large Language Modeling
类别:Text Mining
类别:Unstructured Data
类别:Data Visualization
类别:Natural Language Processing

您将学到什么

  • Experiment with LLMs using hyperparameter tuning and A/B testing.

  • Apply version control and optimize AI workflows with NVIDIA tools like BioNeMo, Triton, and TensorRT.

  • Understand ethical AI principles, data privacy, and methods to minimize bias and enhance AI trustworthiness.

您将获得的技能

类别:Version Control
类别:Responsible AI
类别:Information Privacy
类别:A/B Testing
类别:Large Language Modeling
类别:Deep Learning
类别:Artificial Intelligence
类别:Scalability
类别:MLOps (Machine Learning Operations)
类别:Performance Tuning
类别:Tensorflow
类别:Generative AI
类别:PyTorch (Machine Learning Library)
类别:Machine Learning

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Whizlabs Instructor
Whizlabs
132 门课程86,002 名学生

提供方

Whizlabs

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题