Whizlabs
NVIDIA: Large Language Models and Generative AI Deployment
Whizlabs

NVIDIA: Large Language Models and Generative AI Deployment

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Understand the foundational concepts of LLMs, including NLP and training data.

  • Explore model optimization techniques like loss functions, alignment, and PEFT.

  • Implement deployment strategies for LLMs and monitor performance using ONNX.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

6 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

Welcome to Week 1 of the NVIDIA: Large Language Models and Generative AI Deployment course. This week, we will begin by introducing you to Large Language Models (LLMs) and explore their significance in Natural Language Processing (NLP). We will also demonstrate how LLMs are applied to various NLP tasks using HuggingFace. Next, we will dive into the concept of Generative AI models and their components. We’ll cover the importance of training data for LLMs and best practices for data cleaning. By the end of this week, you will have a solid understanding of LLMs, their applications, and the essential processes involved in training them.

涵盖的内容

6个视频2篇阅读材料2个作业1个讨论话题

Welcome to Week 2 of the NVIDIA: Large Language Models and Generative AI Deployment course. This week, we will cover the essentials of training and optimizing Large Language Models (LLMs). We will begin by exploring the various learning methods, including Few-shot, Zero-shot, Instruction Tuning, and Reinforcement Learning with Human Feedback (RLHF). Next, we will delve into loss functions used in LLMs and techniques for aligning models effectively. We will also cover evaluation metrics such as Perplexity and discuss the critical role of humans in evaluating LLMs. Additionally, we will examine the role of GPUs in training models and explore LLM fine-tuning techniques like Prompt Tuning and Parameter Efficient Fine-Tuning (PEFT). By the end of the week, you will have a solid understanding of how to train, optimize, and evaluate LLMs for real-world applications.

涵盖的内容

9个视频1篇阅读材料2个作业

Welcome to Week 3 of the NVIDIA: Large Language Models and Generative AI Deployment course. This week, we will cover essential strategies for deploying Large Language Models (LLMs) in real-world applications. We will start by exploring various deployment strategies and how to choose the right one for different scenarios. Next, we will introduce ONNX as a tool for unifying the deep learning landscape, and demonstrate how to convert deep learning models using ONNX. We will also focus on monitoring LLMs in production, covering best practices for ensuring their performance and reliability. Finally, we will dive into the NVIDIA ecosystem and how it supports LLM deployment, enhancing model efficiency and scalability. By the end of the week, you will have a clear understanding of LLM deployment and monitoring techniques.

涵盖的内容

5个视频3篇阅读材料2个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Whizlabs Instructor
Whizlabs
132 门课程86,348 名学生

提供方

Whizlabs

从 Software Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题