University of Maryland, College Park
组合和分析复杂数据
University of Maryland, College Park

组合和分析复杂数据

9,240 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.1

(64 条评论)

9 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
4.1

(64 条评论)

9 小时 完成
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

4 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 调查数据收集与分析 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有4个模块

完成本课程的模块 1 和 2 后,您将了解在处理调查数据时如何估算总体和分组的描述性统计。 我们将复习估算软件(R、Stata、SAS),并举例说明如何估算均值、比例和总数。 您还将学习如何估计线性、逻辑和其他模型中的参数,并学习软件选项,重点是 R。这需要了解记录关联技术,以及如何获得数据关联许可。

涵盖的内容

7个视频6篇阅读材料1个作业

模块 2 包括如何使用调查数据估计线性和逻辑模型参数。完成本模块后,您将了解所使用的方法与非调查数据的方法有何不同。我们还将介绍在估算估计模型参数的标准误差时需要考虑的调查数据集的特点。

涵盖的内容

8个视频8篇阅读材料1个作业

该模块首先介绍了当前关于在美国联邦统计系统中使用更多(链接)行政记录的辩论,以及链接记录的一般动机。将举出几个例子说明为什么链接数据是有用的。还将讨论记录关联所面临的挑战。此外,还将简要介绍关键的链接技术。

涵盖的内容

4个视频12篇阅读材料1个作业1个讨论话题

本模块将讨论获得记录链接同意的关键问题。未征得同意可能会导致估算偏差。将列举当前的研究实例,并就如何获得链接同意给出实用建议。

涵盖的内容

5个视频3篇阅读材料1个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

授课教师评分
3.8 (6个评价)
Richard Valliant, Ph.D.
University of Maryland, College Park
5 门课程17,288 名学生

提供方

从 数据分析 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.1

64 条评论

  • 5 stars

    51.56%

  • 4 stars

    25%

  • 3 stars

    12.50%

  • 2 stars

    4.68%

  • 1 star

    6.25%

显示 3/64 个

AA
5

已于 Feb 11, 2021审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题