Coursera
Build Robust Java ML Models with Entropy

即将结束: 只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习新技能。立即节省

Coursera

Build Robust Java ML Models with Entropy

Starweaver
Scott Cosentino

位教师:Starweaver

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
高级设置 等级

推荐体验

3 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Calculate entropy and information gain in Java to identify the most informative attributes in a dataset.

  • Implement and evaluate a complete ID3 decision tree classifier using proper train-test methodology and performance metrics.

  • Build random forest ensembles, handle real-world data challenges, and deploy ML models with persistent storage and user interfaces.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

January 2026

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Level Up: Java-Powered Machine Learning 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

This foundational module introduces students to machine learning using Java and establishes the mathematical principles that power intelligent decision-making algorithms. Students learn why entropy matters as a measure of uncertainty and information, exploring how information gain quantifies the value of asking specific questions about data. Through hands-on coding, students set up their Java ML development environment, implement entropy calculations from scratch, and build the core logic for selecting optimal data splits—creating a working entropy calculator that identifies which attributes in a dataset provide the most useful information. By the end of this module, students understand both the theoretical foundations of entropy-based learning and have practical experience translating mathematical concepts into Java code, setting the stage for building complete decision tree classifiers.

涵盖的内容

4个视频2篇阅读材料1次同伴评审

This module bridges theory and practice by guiding students through building a complete decision tree classifier from scratch using the ID3 algorithm. Students learn how ID3 uses entropy and information gain to make intelligent splitting decisions, implement the full recursive tree construction process including handling leaf nodes and preventing overfitting, and master essential model evaluation techniques using training/testing splits, confusion matrices, and cross-validation. The hands-on lab challenges students to implement their own ID3 decision tree classifier without relying on libraries, train it on a real-world dataset like Iris or mushroom classification, and evaluate its performance with professional metrics—giving them both a working classifier and deep understanding of what happens "under the hood" of any decision tree library they'll use in the future.

涵盖的内容

3个视频1篇阅读材料1次同伴评审

This module transforms students' decision tree knowledge into production-ready machine learning systems by tackling real-world data challenges and advanced ensemble techniques. Students learn to handle continuous numerical attributes through entropy-based discretization, implement strategies for dealing with missing data, and build random forest classifiers that combine multiple trees to dramatically improve accuracy and robustness through bootstrap aggregating and feature randomness. The module culminates in practical deployment skills including model serialization for persistence, creating user-friendly interfaces for predictions, and applying complete ML pipelines to real-world problems like credit risk assessment or customer churn prediction. By the end, students have built a deployable ML application with a command-line interface, compared single trees versus ensemble performance, and gained the skills to integrate machine learning models into production Java applications.

涵盖的内容

4个视频1篇阅读材料1个作业2次同伴评审

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Starweaver
Coursera
523 门课程945,204 名学生

提供方

Coursera

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题