Coursera

Level Up: Java-Powered Machine Learning 专项课程

Coursera

Level Up: Java-Powered Machine Learning 专项课程

Enterprise Java Machine Learning Engineering. Build production-ready ML systems with optimized Java, from data pipelines to deployed models.

Reza Moradinezhad
Starweaver
Karlis Zars

位教师:Reza Moradinezhad

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Design and optimize Java ML systems using SOLID principles, efficient data structures, and memory management for production scalability.

  • Implement core ML algorithms including decision trees, ensemble methods, and entropy-based models with proper evaluation metrics.

  • Build complete ML pipelines with data preprocessing, model training, automated testing, and deployment using enterprise Java tools.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

December 2025

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 14门课程系列

Apply SOLID Design to Optimize Java ML

Apply SOLID Design to Optimize Java ML

第 1 门课程 5小时

您将学到什么

  • Apply the Single Responsibility Principle (SRP) and Open/Closed Principle (OCP) to create modular and extensible components.

  • Implement the Liskov Substitution Principle (LSP) and the Dependency Inversion Principle (DIP) to build flexible and decoupled components.

  • Utilize Maven and Gradle to manage dependencies and structure a Java ML project.

  • Evaluate design trade-offs when applying SOLID principles to a Java ML project.

您将获得的技能

类别:Object Oriented Design
类别:Software Design
类别:Program Evaluation
类别:Object Oriented Programming (OOP)
类别:Programming Principles
类别:API Design
类别:Software Design Patterns
类别:Java
类别:Software Architecture
类别:Machine Learning Methods
类别:Automation
类别:Dependency Analysis
类别:User Interface (UI) Design
类别:Integration Testing
类别:Design Strategies
类别:Maintainability
类别:Apache Maven
类别:Gradle
Master Java Build Tools for ML Projects

Master Java Build Tools for ML Projects

第 2 门课程 4小时

您将学到什么

  • Evaluate which Java build tools best fit their projects.

  • Construct build processes in Maven and Gradle with optimized cachine and parallelism.

  • Implement common build tasks such as dependency resolution, build automation, and multi-project builds.

您将获得的技能

类别:CI/CD
类别:Gradle
类别:Apache Maven
类别:Dependency Analysis
类别:Package and Software Management
类别:Java
类别:Build Tools
类别:Software Development Tools
类别:MLOps (Machine Learning Operations)
Test & Debug Java ML Pipelines

Test & Debug Java ML Pipelines

第 3 门课程 4小时

您将学到什么

  • Apply JUnit and Mockito to create and run unit and integration tests that ensure reliability in Java ML components.

  • Analyze CI/CD logs to detect, interpret, and resolve flaky or inconsistent ML test behaviors in automated pipelines.

  • Debug intermittent ML pipeline issues by applying reproducibility controls, fixed random seeds, and stable test setups.

您将获得的技能

类别:Debugging
类别:Continuous Integration
类别:Jenkins
类别:CI/CD
类别:Test Automation
类别:Test Case
类别:Code Coverage
类别:Model Evaluation
类别:DevOps
类别:JUnit
类别:Test Data
类别:Data Pipelines
类别:MLOps (Machine Learning Operations)
类别:Unit Testing
Parse & Normalize Data for ML Pipelines

Parse & Normalize Data for ML Pipelines

第 4 门课程 4小时

您将学到什么

  • Create efficient CSV parsers using Java libraries with object mapping, error handling, and streaming for 100K+ records.

  • Build data cleaning pipelines with multiple scaling algorithms, outlier handling, and serializable parameters for train-inference consistency.

  • Architect modular pipelines using builder patterns that chain operations with monitoring and ML framework integration for large-scale data.

您将获得的技能

类别:Data Pipelines
类别:Data Preprocessing
类别:Java
类别:Data Processing
类别:Data Validation
类别:Data Cleansing
类别:Data Transformation
类别:Unit Testing
类别:Feature Engineering
类别:Continuous Monitoring
类别:Data Access
类别:Data Quality
类别:Object Oriented Programming (OOP)
Optimize Java Memory for ML Performance

Optimize Java Memory for ML Performance

第 5 门课程 4小时

您将学到什么

  • Analyze profiler output to diagnose memory bottlenecks using Java Flight Recorder by interpreting heap graphs, GC pauses, and object churn.

  • Optimize data structures to reduce GC overhead 15-30% by replacing inefficient collections, implementing object pooling, and using primitives.

  • Tune JVM parameters and GC settings for production ML workloads by configuring heap sizes and selecting appropriate GC algorithms.

您将获得的技能

类别:Containerization
类别:Java
类别:Performance Tuning
类别:Data Structures
类别:MLOps (Machine Learning Operations)
类别:Model Deployment
类别:Application Performance Management
类别:Analysis
类别:Docker (Software)
类别:Artificial Intelligence and Machine Learning (AI/ML)
类别:Kubernetes
Choose Optimal Data Structures for ML

Choose Optimal Data Structures for ML

第 6 门课程 4小时

您将学到什么

  • 1

  • 2

  • 3

您将获得的技能

类别:Data Structures
类别:Feature Engineering
类别:Applied Machine Learning
类别:Data Processing
类别:MLOps (Machine Learning Operations)
类别:Program Implementation
类别:Performance Testing
类别:Scalability
类别:Graph Theory
类别:Performance Tuning
类别:Performance Analysis
类别:Benchmarking
类别:Java
类别:Tree Maps
类别:System Monitoring
Solve Tree Problems with Java Recursion

Solve Tree Problems with Java Recursion

第 7 门课程 4小时

您将学到什么

  • Configure CI/CD pipelines, jobs, and runners to automate and manage the build, test, and deploy stages of a DevOps development cycle.

  • Design GitLab pipeline workflows that streamline application builds, automate testing, and improve code quality and security.

  • Evaluate and compare deployment strategies to determine the most effective approach for different types of applications and environments.

您将获得的技能

类别:Data Structures
类别:Java
类别:Algorithms
类别:Mitigation
类别:Computational Thinking
类别:Performance Tuning
类别:Management Consulting
类别:Project Implementation
类别:Programming Principles
类别:Scalability
类别:Debugging
类别:Enterprise Application Management

您将学到什么

  • Apply node-insertion and deletion operations in Java to maintain a Binary Search Tree.

  • Evaluate the time complexity of search, insertion, and deletion operations for both balanced and skewed BSTs.

  • Demonstrate balancing techniques (e.g., AVL rotations) to improve BST performance.

您将获得的技能

类别:Data Structures
类别:Algorithms
类别:Software Engineering
类别:Performance Tuning
类别:Application Performance Management
类别:Program Development
类别:Java
类别:Engineering Software
类别:Tree Maps
类别:Theoretical Computer Science
类别:Maintainability
类别:Benchmarking
类别:Scalability
Traverse Trees for ML with DFS & BFS

Traverse Trees for ML with DFS & BFS

第 9 门课程 4小时

您将学到什么

  • Analyze the differences between Breadth-First Search and Depth-First Search to understand when to use each approach.

  • Implement a Breadth-First Search and Depth-First Search in Java to traverse decision trees.

  • Apply tree traversal algorithms such as BFS and DFS to generate rulesets from decision trees.

您将获得的技能

类别:Classification And Regression Tree (CART)
类别:Decision Tree Learning
类别:Java Programming
类别:Supervised Learning
类别:Java
类别:Algorithms
类别:Machine Learning Algorithms
类别:Data Structures
类别:Machine Learning
类别:Classification Algorithms
类别:Software Engineering

您将学到什么

  • Describe machine learning concepts, supervised and unsupervised learning types, and how Java's architecture supports scalable ML implementations.

  • Explore Java ML libraries, including Weka, Deeplearning4j, & smile, implementing classification, regression, and clustering models programmatically.

  • Master ML workflows including data preprocessing, model training, evaluation, deployment, and best practices for production systems.

您将获得的技能

类别:Deep Learning
类别:Java
类别:Java Programming
类别:Feature Engineering
类别:Data Pipelines

您将学到什么

  • Explain the core principles of ensemble learning and describe when and why combining diverse models improves predictive accuracy.

  • Implement bagging and boosting algorithms in Java within a Jupyter Notebook, tuning key parameters for optimal performance.

  • Build, tune, and evaluate random forest models for classification and regression, interpret features, and compare results with ensemble methods.

您将获得的技能

类别:Random Forest Algorithm
类别:Decision Tree Learning
类别:Java
类别:Predictive Modeling
类别:Applied Machine Learning
类别:Program Evaluation
类别:Program Implementation
类别:Data Preprocessing
类别:Machine Learning
类别:Jupyter
类别:Classification Algorithms
类别:Sampling (Statistics)
类别:Feature Engineering
类别:Supervised Learning
类别:Model Evaluation
类别:Learning Styles
Evaluate & Swap Models in Java ML

Evaluate & Swap Models in Java ML

第 12 门课程 4小时

您将学到什么

  • Apply Java ML evaluation methods using metrics alongside cross-validation to measure real-world generalization and avoid overfitting.

  • Benchmark multiple Java ML algorithms on the same dataset to identify the optimal model.

  • Design swappable machine-learning components using interface-driven architecture and the Strategy Pattern.

您将获得的技能

类别:Model Evaluation
类别:Decision Tree Learning
类别:Java
类别:Logistic Regression
类别:Maintainability
类别:Software Design Patterns
类别:Machine Learning Algorithms
类别:MLOps (Machine Learning Operations)
类别:Software Architecture
类别:Classification Algorithms
类别:Matrix Management
类别:Benchmarking
类别:Business Metrics
类别:Business
类别:Applied Machine Learning
类别:Data Preprocessing
Build & Evaluate Decision Trees for ML

Build & Evaluate Decision Trees for ML

第 13 门课程 4小时

您将学到什么

  • Explain decision tree fundamentals including tree structure, splitting criteria, and how recursive partitioning builds predictive models.

  • Build decision tree classifiers using Weka GUI and Java API, implement models with Smile, and configure hyperparameters for optimal performance.

  • Evaluate decision tree models using confusion matrices, accuracy metrics, cross-validation techniques, and interpret results to assess model quality.

您将获得的技能

类别:Classification Algorithms
类别:Decision Tree Learning
类别:Machine Learning
类别:Predictive Modeling
类别:Feature Engineering
类别:Java
类别:Machine Learning Algorithms
类别:Data Preprocessing
类别:Machine Learning Software
类别:Algorithms
类别:Model Evaluation
类别:Supervised Learning
类别:MLOps (Machine Learning Operations)
类别:Applied Machine Learning
类别:Tree Maps
类别:Technical Communication
Build Robust Java ML Models with Entropy

Build Robust Java ML Models with Entropy

第 14 门课程 4小时

您将学到什么

  • Calculate entropy and information gain in Java to identify the most informative attributes in a dataset.

  • Implement and evaluate a complete ID3 decision tree classifier using proper train-test methodology and performance metrics.

  • Build random forest ensembles, handle real-world data challenges, and deploy ML models with persistent storage and user interfaces.

您将获得的技能

类别:Random Forest Algorithm
类别:Java
类别:Decision Tree Learning
类别:Algorithms
类别:Program Evaluation
类别:Machine Learning
类别:Feature Engineering
类别:Model Evaluation
类别:Model Deployment
类别:Data Preprocessing
类别:Classification Algorithms
类别:Business Development
类别:Predictive Modeling
类别:Program Implementation
类别:Applied Machine Learning

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Reza Moradinezhad
Coursera
6 门课程 4,320 名学生
Starweaver
Coursera
548 门课程 995,402 名学生
Karlis Zars
33 门课程 57,379 名学生

提供方

Coursera

您可能还喜欢

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题