筛选依据
主题必需的
语言必需的
在整个课程(说明和评估)中使用的语言。
了解产品必需的
级别必需的
课程长度必需的
技能必需的
字幕必需的
教师必需的
“artificial intelligence and machine learning (ai/ml)” 的结果
- 状态:免费试用
IBM
您将获得的技能: LLM 申请, 市场机遇, 生成式人工智能, 负责任的人工智能, 自然语言处理
- 状态:免费
Amazon Web Services
您将获得的技能: Artificial Intelligence and Machine Learning (AI/ML), Generative AI, Deep Learning, Artificial Intelligence, Amazon Web Services, Applied Machine Learning, Machine Learning
- 状态:新状态:免费试用
您将获得的技能: Unsupervised Learning, Seaborn, Matplotlib, Predictive Modeling, Supervised Learning, NumPy, Applied Machine Learning, Predictive Analytics, Dimensionality Reduction, Random Forest Algorithm, PyTorch (Machine Learning Library), Deep Learning, Keras (Neural Network Library), Scatter Plots, Tensorflow, Statistical Visualization, Python Programming, Data Science, Machine Learning, Data Analysis
- 状态:免费试用
多位教师
您将获得的技能: 数据伦理, 机器学习, 分类与回归树 (CART), 人工智能, 预测建模, 人工智能和机器学习(AI/ML), 无监督学习, NumPy, Python 程序设计, 强化学习, 随机森林算法, 应用机器学习, 决策树学习, 负责任的人工智能, Jupyter, 功能工程, 监督学习, 深度学习, 张力流, Scikit-learn (机器学习库)
- 状态:免费试用
您将获得的技能: Data Management, Artificial Intelligence and Machine Learning (AI/ML), Infrastructure Architecture, MLOps (Machine Learning Operations), Application Deployment, Data Processing, Data Cleansing, Artificial Intelligence, Data Security, Application Frameworks, PyTorch (Machine Learning Library), Machine Learning, Tensorflow, Applied Machine Learning, Data Pipelines, Scalability
- 状态:免费试用
Microsoft
您将获得的技能: Unsupervised Learning, Generative AI, Large Language Modeling, Data Management, Natural Language Processing, MLOps (Machine Learning Operations), Supervised Learning, Microsoft Azure, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), Infrastructure Architecture, LLM Application, Responsible AI, Generative AI Agents, Applied Machine Learning, Reinforcement Learning, Data Ethics, Prompt Engineering, Data Processing, Application Deployment
是什么让您今天来到 Coursera?
- 状态:免费试用状态:人工智能技能
University of Pennsylvania
您将获得的技能: Statistical Machine Learning, PyTorch (Machine Learning Library), Statistical Methods, Probability, Probability & Statistics, Sampling (Statistics), Deep Learning, Probability Distribution, Python Programming, Supervised Learning, Statistics, Machine Learning Methods, Machine Learning, Regression Analysis, Data Processing, Agentic systems, Data Science, Artificial Intelligence, Artificial Neural Networks, Algorithms
- 状态:免费试用
DeepLearning.AI
您将获得的技能: 应用数学, 机器学习, 线性代数, A/B 测试, 微积分, Machine Learning 方法, 数据转换, 统计推理, 抽样(统计), NumPy, 降维, 概率, 概率分布, 描述性统计, 统计假设检验, 概率与统计, 数值分析, 统计分析, 贝叶斯统计, 数学建模
- 状态:免费试用
Illinois Tech
您将获得的技能: 人工智能, 机器学习, 新兴技术, 数据伦理, 监督学习, 人工智能和机器学习(AI/ML), 技术战略, 克劳德人类学, 商业智能, 生成式人工智能, 应用机器学习, OpenAI, 商业道德, 人机界面, 深度学习, 负责任的人工智能
- 状态:免费试用
Google Cloud
您将获得的技能: 机器学习, MLOps(机器学习 Operator), 人工智能, Prompt Engineering, 云平台, Google 云端平台, 生成式人工智能, 云基础设施, 自然语言处理
- 状态:新状态:预览
O.P. Jindal Global University
您将获得的技能: Supervised Learning, Tensorflow, Image Analysis, Artificial Neural Networks, Scikit Learn (Machine Learning Library), Python Programming, Machine Learning, Deep Learning, Unstructured Data, NumPy, Matplotlib, Natural Language Processing, Text Mining, Pandas (Python Package), Regression Analysis, Performance Tuning
- 状态:预览
Duke University
您将获得的技能: 机器学习, 计算机视觉, Machine Learning 方法, PyTorch(机器学习库), 无监督学习, 监督学习, 人工神经网络, Python 程序设计, 医学影像, 强化学习, 应用机器学习, 图像分析, 自然语言处理, 深度学习
总之,以下是 10 最受欢迎的 artificial intelligence and machine learning (ai/ml) 课程
- 人工智能 (AI) 概论: IBM
- Fundamentals of Machine Learning and Artificial Intelligence: Amazon Web Services
- Artificial Intelligence with Python: Foundations to Projects: EDUCBA
- 机器学习: DeepLearning.AI
- Foundations of AI and Machine Learning: Microsoft
- Microsoft AI & ML Engineering: Microsoft
- AI and Machine Learning Essentials with Python: University of Pennsylvania
- 机器学习和数据科学数学: DeepLearning.AI
- 人工智能: Illinois Tech
- 谷歌云上的人工智能和机器学习简介: Google Cloud