Coursera

ML Production Systems 专项课程

Coursera

ML Production Systems 专项课程

Build Production-Ready ML Systems. Deploy, optimize, and scale machine learning models for real-world production environments.

Hurix Digital
ansrsource instructors

位教师:Hurix Digital

包含在 Coursera Plus

深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入学习学科知识
中级 等级

推荐体验

4 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Containerize, deploy, and orchestrate ML models using Docker and Kubernetes for scalable production environments.

  • Build automated ML pipelines with CI/CD integration, systematic hyperparameter tuning, and test-driven development practices.

  • Optimize inference performance and manage ML codebases using Git workflows, resource scaling, and monitoring strategies.

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)
最近已更新!

February 2026

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

精进特定领域的专业知识

  • 向大学和行业专家学习热门技能
  • 借助实践项目精通一门科目或一个工具
  • 培养对关键概念的深入理解
  • 通过 Coursera 获得职业证书

专业化 - 4门课程系列

您将学到什么

Apply Test-Driven ML Code

Apply Test-Driven ML Code

第 2 门课程 1小时

您将学到什么

  • Test-driven development creates a safety net that enables confident refactoring and continuous improvement of ML codebases for reliable systems.

  • Modular design principles applied to ML components (data loaders, training loops) dramatically improve code reusability and team collaboration.

  • Production-quality ML code requires the same software engineering rigor as traditional development, including comprehensive testing and CI/CD.

  • Investing in code quality upfront prevents technical debt that can derail ML projects during scaling and deployment phases of development.

您将获得的技能

类别:CI/CD
类别:Test Driven Development (TDD)
类别:Tensorflow
类别:Model Deployment
类别:Software Testing
类别:MLOps (Machine Learning Operations)
类别:Python Programming
类别:Testability
类别:Software Engineering
类别:Machine Learning Methods
类别:Maintainability
类别:Unit Testing
Scale Kubernetes: Optimize Your Systems

Scale Kubernetes: Optimize Your Systems

第 3 门课程 2小时

您将学到什么

  • Effective K8s resource management needs continuous monitoring and proactive scaling threshold adjustments based on usage patterns.

  • Optimal utilization balances performance and cost, targeting 70-80% usage to handle spikes without waste.

  • Automated scaling must consider app startup times and traffic patterns to prevent over-provisioning and performance issues.

  • Resource requests/limits ensure predictable performance while preventing resource starvation across workloads.

您将获得的技能

类别:Kubernetes
类别:Scalability
类别:Capacity Management
类别:Continuous Monitoring
类别:MLOps (Machine Learning Operations)
类别:Grafana
类别:Performance Tuning
类别:Dashboard
类别:System Monitoring
类别:Prometheus (Software)
类别:Analysis
类别:YAML
Optimize and Manage Your ML Codebase

Optimize and Manage Your ML Codebase

第 4 门课程 1小时

您将学到什么

  • Performance optimization needs systematic profiling and targeted fixes across pipeline stages, from data prep to model execution.

  • Effective ML workflows depend on branching strategies and CI/CD practices aligned with team size, release pace, and deployment needs.

  • Production ML systems balance model accuracy with inference speed through techniques like quantization and pruning.

  • Sustainable ML codebases integrate version control with automated testing and deployment pipelines for quality and velocity.

您将获得的技能

类别:Version Control
类别:Git (Version Control System)
类别:CI/CD
类别:Continuous Deployment
类别:Continuous Delivery
类别:Model Deployment
类别:Release Management
类别:PyTorch (Machine Learning Library)
类别:Software Development Methodologies
类别:Performance Tuning
类别:Performance Improvement
类别:Continuous Integration
类别:Model Evaluation
类别:Performance Testing
类别:Software Versioning
类别:MLOps (Machine Learning Operations)

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Hurix Digital
Coursera
283 门课程 19,427 名学生

提供方

Coursera

您可能还喜欢

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'

Jennifer J.

自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'

Larry W.

自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'

Chaitanya A.

''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题