Google Cloud
Preparing for Google Cloud Certification: Machine Learning Engineer 专业证书
Google Cloud

Preparing for Google Cloud Certification: Machine Learning Engineer 专业证书

Advance your career as a Cloud ML Engineer

59,665 人已注册

包含在 Coursera Plus

获得职业证书,展示您的专业知识
4.5

(2,306 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
获得职业证书,展示您的专业知识
4.5

(2,306 条评论)

中级 等级

推荐体验

2 月 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Learn the skills needed to be successful in a machine learning engineering role

  • Prepare for the Google Cloud Professional Machine Learning Engineer certification exam

  • Understand how to design, build, productionalize ML models to solve business challenges using Google Cloud technologies

  • Understand the purpose of the Professional Machine Learning Engineer certification and its relationship to other Google Cloud certifications

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

专业认证 - 6门课程系列

您将学到什么

  • Recognize the data-to-AI technologies and tools offered by Google Cloud.

  • Use generative AI capabilities in applications.

  • Choose between different options to develop an AI project on Google Cloud.

  • Build ML models end-to-end by using Vertex AI.

您将获得的技能

类别:Google Cloud Platform
类别:Generative AI
类别:Prompt Engineering
类别:Natural Language Processing
类别:Machine Learning
类别:MLOps (Machine Learning Operations)
类别:Artificial Intelligence
类别:Cloud Infrastructure
类别:Cloud Platforms

您将学到什么

  • Design and build a TensorFlow input data pipeline.

  • Use the tf.data library to manipulate data in large datasets.

  • Use the Keras Sequential and Functional APIs for simple and advanced model creation.

  • Train, deploy, and productionalize ML models at scale with Vertex AI.

您将获得的技能

类别:Keras (Neural Network Library)
类别:Google Cloud Platform
类别:Tensorflow
类别:Deep Learning
类别:Artificial Neural Networks
类别:Data Pipelines
类别:MLOps (Machine Learning Operations)
类别:Data Cleansing
类别:Data Transformation
类别:Application Programming Interface (API)
类别:Python Programming
类别:Cloud Computing
类别:Machine Learning
Feature Engineering

Feature Engineering

第 3 门课程8小时

您将学到什么

  • Describe Vertex AI Feature Store and compare the key required aspects of a good feature.

  • Perform feature engineering using BigQuery ML, Keras, and TensorFlow.

  • Discuss how to preprocess and explore features with Dataflow and Dataprep.

  • Use tf.Transform.

您将获得的技能

类别:Feature Engineering
类别:Keras (Neural Network Library)
类别:Data Transformation
类别:Data Pipelines
类别:Tensorflow
类别:Data Modeling
类别:Machine Learning
类别:Real Time Data
类别:Data Processing
类别:Data Storage
类别:MLOps (Machine Learning Operations)
Machine Learning in the Enterprise

Machine Learning in the Enterprise

第 4 门课程17小时

您将学到什么

  • Describe data management, governance, and preprocessing options

  • Identify when to use Vertex AutoML, BigQuery ML, and custom training

  • Implement Vertex Vizier Hyperparameter Tuning

  • Explain how to create batch and online predictions, setup model monitoring, and create pipelines using Vertex AI

您将获得的技能

类别:Google Cloud Platform
类别:Data Pipelines
类别:MLOps (Machine Learning Operations)
类别:Data Management
类别:Workflow Management
类别:Tensorflow
类别:Applied Machine Learning
类别:Continuous Monitoring
类别:Data Transformation
类别:Machine Learning
类别:Data Governance
类别:Cloud Computing
Production Machine Learning Systems

Production Machine Learning Systems

第 5 门课程18小时

您将学到什么

  • Compare static versus dynamic training and inference

  • Manage model dependencies

  • Set up distributed training for fault tolerance, replication, and more

  • Export models for portability

您将获得的技能

类别:Tensorflow
类别:MLOps (Machine Learning Operations)
类别:Performance Tuning
类别:Machine Learning
类别:Google Cloud Platform
类别:Distributed Computing
类别:Hybrid Cloud Computing
类别:Applied Machine Learning
类别:Data Pipelines
类别:Systems Design
类别:Scalability
类别:Systems Architecture

您将学到什么

  • Identify and use core technologies required to support effective MLOps.

  • Adopt the best CI/CD practices in the context of ML systems.

  • Configure and provision Google Cloud architectures for reliable and effective MLOps environments.

  • Implement reliable and repeatable training and inference workflows.

您将获得的技能

类别:MLOps (Machine Learning Operations)
类别:Data Pipelines
类别:CI/CD
类别:DevOps
类别:Continuous Deployment
类别:Version Control
类别:Cloud Management
类别:Machine Learning
类别:Google Cloud Platform
类别:Automation

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Google Cloud Training
Google Cloud
1,978 门课程3,620,726 名学生

提供方

Google Cloud

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ Median salary and job opening data are sourced from Lightcast™ Job Postings Report. Content Creator, Machine Learning Engineer and Salesforce Development Representative (1/1/2024 - 12/31/2024) All other job roles (10/1/2024 - 10/1/2025)