This intermediate-level course empowers learners to apply, analyze, and evaluate machine learning models using Apache PySpark’s distributed computing framework. Designed for data professionals familiar with Python and basic ML concepts, the course explores real-world implementation of both regression and classification techniques, along with unsupervised clustering.


您将学到什么
Build and evaluate regression models in PySpark using linear, GLM, and ensemble methods.
Apply logistic regression, decision trees, and Random Forests for classification.
Implement K-Means clustering and assess scalable ML workflows with PySpark.
您将获得的技能
要了解的详细信息

添加到您的领英档案
August 2025
7 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有2个模块
This module introduces learners to foundational and advanced regression modeling techniques using PySpark's MLlib. Learners begin with basic linear regression workflows including data preparation, feature assembly, and prediction. They then progress to more complex models such as Generalized Linear Regression and ensemble techniques like Random Forest Regression. The module culminates with logistic regression models designed for binary classification, enabling learners to construct and evaluate scalable machine learning pipelines for predictive analytics in distributed environments.
涵盖的内容
11个视频4个作业
This module equips learners with the ability to build, train, and evaluate classification and clustering models using PySpark's machine learning library. It covers practical applications of multinomial logistic regression for multi-class problems, decision tree classifiers for rule-based predictions, ensemble methods like Random Forests for improved generalization, and unsupervised clustering techniques using the K-Means algorithm. Through hands-on demonstrations, learners gain proficiency in data preparation, model configuration, prediction interpretation, and model performance evaluation in large-scale distributed environments.
涵盖的内容
5个视频3个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
从 Data Analysis 浏览更多内容
- 状态:免费试用
- 状态:免费试用
Edureka
- 状态:免费试用
University of Pennsylvania
- 状态:预览
Edureka
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,