Northeastern University
Program Structure and Algorithms Part 2
Northeastern University

Program Structure and Algorithms Part 2

Nicholas Brown

位教师:Nicholas Brown

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

作业

32 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有6个模块

In this module, you will master dynamic programming principles such as memoization and tabulation to optimize complex problems. You will learn how to apply these techniques by implementing the Bellman-Ford algorithm and solving optimization challenges. Additionally, you will see how to use dynamic programming and backtracking to tackle puzzles and constraint-satisfaction problems, with opportunities to integrate reinforcement learning concepts.

涵盖的内容

2个视频16篇阅读材料5个作业2个应用程序项目

In this module you will explore network flow fundamentals and the max-flow min-cut theorem and their practical applications. You will master key algorithms such as Ford-Fulkerson and Push-Relabel to solve network flow problems. These techniques will be applied to real-world challenges like bipartite matching and project selection, providing a strong foundation in network optimization.

涵盖的内容

1个视频16篇阅读材料5个作业

In this module, you will gain a deep understanding of P, NP, and NP-Completeness, including how to classify and differentiate these problem types. You will master techniques for proving NP-Completeness and identifying NP-Hard problems. Additionally, you will develop and apply approximation algorithms and heuristics to tackle intractable problems, focusing on efficiency and trade-offs in complex problem-solving.

涵盖的内容

13篇阅读材料5个作业1个应用程序项目

In this module, you will master the fundamentals of Bayes' Rule, including understanding its components such as prior, likelihood, posterior, and evidence. You will learn how to apply Bayes' Rule to solve probability problems and update prior information with new evidence. Additionally, you will employ Bayesian inference to analyze data.

涵盖的内容

13篇阅读材料5个作业

In this module, you will explore the role of approximation algorithms in addressing NP-hard optimization problems by seeking near-optimal solutions within a practical time frame. You will learn to evaluate the performance of these algorithms using performance ratios to gauge their proximity to the optimal solution. Through examples such as the Vertex Cover, Traveling Salesman, Set Covering, and Subset Sum Problems, you will gain hands-on experience in applying approximation algorithms.

涵盖的内容

17篇阅读材料7个作业

In this module, you will delve into the principles and motivations behind randomized algorithms, understanding the key differences between deterministic and randomized approaches. You will analyze randomized sorting and searching algorithms, such as randomized quicksort and randomized binary search, to assess their efficiency and reliability. Additionally, you will explore randomized data structures like skip lists and hash tables, evaluating their performance advantages.

涵盖的内容

14篇阅读材料5个作业

位教师

Nicholas Brown
Northeastern University
4 门课程370 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题