Northeastern University
Program Structure and Algorithms Part 1
Northeastern University

Program Structure and Algorithms Part 1

Nicholas Brown

位教师:Nicholas Brown

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

July 2025

作业

35 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有7个模块

In this module, you will be introduced to the foundational concept of algorithms, including their characteristics and how they are integral to solving computational problems. You’ll explore the basics of algorithmic complexity and efficiency, providing a strong foundation for the advanced topics in subsequent modules.

涵盖的内容

2个视频10篇阅读材料2个作业

In this module, you will explore the powerful and elegant Gale-Shapley algorithm, originally developed to solve the stable marriage problem. This algorithm, widely used in real-world applications such as college admissions and job matching, ensures that individuals are paired in a way that avoids instability—where two participants could form a better match with someone else. By understanding the principles behind stable matching and the mechanics of this algorithm, you'll gain insight into one of the most influential solutions in game theory, optimization, and computer science.

涵盖的内容

1个视频13篇阅读材料5个作业

In this module, you'll explore the fundamental principles of sorting algorithms and understand how caching plays a key role in optimizing data retrieval. You'll learn to code basic algorithms like bubble sort and selection sort and more advanced ones like mergesort and quicksort. Along the way, you'll evaluate the efficiency of these algorithms through complexity analysis, helping you grasp their real-world performance.

涵盖的内容

1个视频14篇阅读材料5个作业

In this module, you'll begin by summarizing key concepts like computational tractability, asymptotic growth, and the notations used to evaluate algorithm efficiency. You'll then dive into time complexity, learning how to optimize algorithms for different scenarios and classify them into appropriate complexity classes. By the end, you'll be able to apply these analysis techniques to real-world problems, optimizing solutions while considering the implications and limitations of algorithm analysis.

涵盖的内容

1个视频15篇阅读材料6个作业

In this module, you'll explore the key concepts and significance of graph theory across various domains. You'll master DFS and BFS for traversal, cycle detection, and connectivity analysis and implement algorithms for topological sorting, bipartiteness testing, and analyzing Directed Acyclic Graphs (DAGs).

涵盖的内容

1个视频17篇阅读材料7个作业

In this module, you will explore key algorithms used in optimization and network design. You will see how to apply greedy strategies to solve problems like interval scheduling, how to implement Dijkstra's algorithm for shortest pathfinding in weighted graphs, and how Huffman coding can be used for efficient data compression.

涵盖的内容

3个视频13篇阅读材料5个作业

In this module you will learn to implement and analyze key divide-and-conquer strategies in algorithm design. You will learn how these techniques can be applied through algorithms like merge sort, quicksort, and Karatsuba's algorithm for faster multiplication. Additionally, you will examine Strassen's algorithm for efficient matrix multiplication. Finally, you will consider the complexities of these methods.

涵盖的内容

1个视频14篇阅读材料5个作业

位教师

Nicholas Brown
Northeastern University
4 门课程377 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题