Throughout Predicting Extreme Climate Behavior with Machine Learning, you'll explore both theoretical concepts and practical applications or machine learning and data analysis. You'll begin by analyzing unsupervised learning algorithms, mastering techniques like clustering and dimensionality reduction, and applying them to real-world climate datasets. You'll also explore supervised learning, gaining hands-on experience with algorithms such as Logistic Regression, Decision Trees, and Neural Networks.


您将学到什么
Analyze and differentiate between various machine learning algorithms, including unsupervised and supervised methods
Apply dimensionality reduction techniques, such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD), to complex datasets
Implement supervised learning algorithms using Python, and evaluate their performance through practical exercises and real-world case studies.
Develop and apply effective clustering methods to analyze and segment data
您将获得的技能
- Data Science
- Feature Engineering
- Artificial Neural Networks
- Supervised Learning
- Machine Learning
- Data Processing
- Machine Learning Algorithms
- Dimensionality Reduction
- Statistical Analysis
- Classification And Regression Tree (CART)
- Unsupervised Learning
- Predictive Modeling
- Scikit Learn (Machine Learning Library)
- Applied Machine Learning
- Regression Analysis
要了解的详细信息

添加到您的领英档案
4 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有5个模块
Data can be viewed in higher and lower dimensions, and this module will help you explore this key aspect of data science. PCA/SVD are two key methods of unsupervised machine learning in terms of dimensional reduction
涵盖的内容
6个视频3篇阅读材料1个作业1个编程作业1个讨论话题1个非评分实验室
In this module, we delve into the concept of clustering, a fundamental technique in data analysis and machine learning. Clustering involves grouping a set of objects in such a way that objects in the same group (or cluster) are more similar to each other than to those in other groups. This module will provide a comprehensive exploration of clustering, including its various derivations, such as hierarchical clustering and K-Means.
涵盖的内容
3个视频4篇阅读材料1个作业1个编程作业1个非评分实验室
Regression is a cornerstone technique in machine learning, particularly when working with continuous variables, and is essential for modeling relationships between variables and predicting outcomes. In this module, we will explore the fundamental principles of regression, focusing on linear regression.
涵盖的内容
2个视频2篇阅读材料1个作业1个编程作业2个非评分实验室
In this module, we will explore classification techniques, a critical aspect of supervised learning in machine learning. Classification is the process of assigning labels to input data based on its features, and it is widely used for tasks like spam detection, medical diagnosis, and image recognition. Throughout this module, we will explore several key classification methods, including Logistic Regression, Decision Trees, Random Forest, and Support Vector Machines (SVM). Each of these techniques offers unique strengths and is suited to different types of data and problem contexts. By the end of this module, you will have a thorough understanding of how these classification algorithms work, how to implement them, and how to choose the right method for your specific supervised learning challenges.
涵盖的内容
9个视频3篇阅读材料3个编程作业2个非评分实验室
This final module dives into Neural Networks and its application to climate data, primarily with different activation functions, layers, neurons and architectural structures of the network.
涵盖的内容
3个视频4篇阅读材料1个作业1个讨论话题1个非评分实验室
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
攻读学位
课程 是 University of Colorado Boulder提供的以下学位课程的一部分。如果您被录取并注册,您已完成的课程可计入您的学位学习,您的学习进度也可随之转移。
位教师

从 Data Analysis 浏览更多内容
- 状态:免费试用
University of Colorado Boulder
- 状态:免费试用
University of Colorado Boulder
- 状态:免费试用
DeepLearning.AI
- 状态:免费试用
University of Colorado Boulder
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,