Coursera
Parse & Normalize Data for ML Pipelines

只需 199 美元(原价 399 美元)即可通过 Coursera Plus 学习更高水平的技能。立即节省

Coursera

Parse & Normalize Data for ML Pipelines

Aseem Singhal
Starweaver

位教师:Aseem Singhal

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

4 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Create efficient CSV parsers using Java libraries with object mapping, error handling, and streaming for 100K+ records.

  • Build data cleaning pipelines with multiple scaling algorithms, outlier handling, and serializable parameters for train-inference consistency.

  • Architect modular pipelines using builder patterns that chain operations with monitoring and ML framework integration for large-scale data.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

December 2025

作业

1 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Level Up: Java-Powered Machine Learning 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有3个模块

This module establishes the foundation for robust data ingestion by teaching learners to efficiently parse large-scale delimited files using industry-standard Java libraries. Students will master the critical skills of transforming raw CSV/TSV data into strongly-typed Java objects while handling real-world challenges like character encoding issues, missing values, and memory optimization for datasets exceeding 100K records.

涵盖的内容

4个视频3篇阅读材料

This module focuses on implementing comprehensive data cleaning and transformation pipelines that prepare raw features for optimal ML model performance. Learners will build statistical normalization utilities using multiple scaling algorithms, develop robust strategies for handling outliers and missing values, and create serializable transformation parameters that ensure consistent data preprocessing between training and production environments.

涵盖的内容

3个视频2篇阅读材料

This module integrates parsing and normalization capabilities into enterprise-grade, modular preprocessing workflows using advanced Java design patterns. Students will architect production-ready pipelines with functional programming principles, implement comprehensive monitoring and error handling systems, and seamlessly integrate their data processing solutions with popular Java ML frameworks while maintaining performance efficiency for large-scale deployments.

涵盖的内容

4个视频3篇阅读材料1个作业

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Aseem Singhal
Coursera
9 门课程5,010 名学生

提供方

Coursera

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

常见问题