Packt
Jetson Nano Starter to Pro - A Computer Vision Course
Packt

Jetson Nano Starter to Pro - A Computer Vision Course

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Set up the NVIDIA Jetson device for AI and computer vision tasks.

  • Perform basic and advanced image processing operations using OpenCV and PyTorch.

  • Train YOLO models for real-time object detection and optimize them with TensorRT.

  • Implement DeepStream for multi-camera synchronization and real-time object tracking.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

August 2025

作业

17 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有16个模块

In this module, we will introduce the NVIDIA Jetson platform and explain how to set up your Jetson device. We’ll also provide a detailed overview of the course, highlighting key topics and hands-on projects that will enhance your understanding of AI and robotics.

涵盖的内容

3个视频1篇阅读材料

In this module, we will compare Jetson with Raspberry Pi, helping you understand why Jetson is superior for AI applications. We will also guide you through flashing an SD card and selecting the optimal card for your device, ensuring a smooth setup.

涵盖的内容

5个视频1个作业1个插件

In this module, we will cover the installation of essential libraries such as OpenCV and PyTorch on Jetson. We’ll explore their functionalities and guide you through setting up an AI-ready environment for efficient project development.

涵盖的内容

5个视频1个作业1个插件

In this module, we will dive into computer vision basics, demonstrating image manipulation with OpenCV and PyTorch. You will learn core techniques such as edge detection, image filtering, and geometric transformations to work with images effectively.

涵盖的内容

11个视频1个作业1个插件

In this module, we will introduce you to the world of object detection and explore the YOLO algorithm, including its variants and their suitability for various use cases.

涵盖的内容

2个视频1个作业1个插件

In this module, we will walk you through the process of annotating a custom dataset, training a YOLO model, and applying it for number plate recognition. You will gain hands-on experience with both training and inference processes.

涵盖的内容

3个视频1个作业1个插件

In this module, we will explore TensorRT, a critical tool for accelerating deep learning models on Jetson devices. We will also guide you through setting up your Jetson for TensorRT.

涵盖的内容

2个视频1个作业1个插件

In this module, we will focus on optimizing the YOLOX object detection model using TensorRT. We will walk you through the conversion process, test the optimized model, and analyze performance improvements.

涵盖的内容

3个视频1个作业1个插件

In this module, we will introduce DeepStream, explaining how it works and how to set up the DeepStream SDK on your Jetson device. You will also learn how to utilize DeepStream for real-time AI applications.

涵盖的内容

9个视频1个作业1个插件

In this module, we will demonstrate how to integrate multiple camera feeds into the DeepStream SDK. You will learn about video streaming protocols and how to perform object detection across multiple cameras in real-time.

涵盖的内容

8个视频1个作业1个插件

In this module, we will guide you through the process of implementing a vehicle detection and tracking system. You will learn how to configure the application and evaluate its performance in real-world scenarios.

涵盖的内容

5个视频1个作业1个插件

In this module, we will cover the process of training a custom object detection model for number plate recognition. You will use Roboflow, Google Colab, and Paddle OCR to build and deploy an effective ANPR system.

涵盖的内容

8个视频1个作业1个插件

In this module, we will introduce pose estimation and demonstrate how to use PoseNet on Jetson for accurate pose detection. We will also explore techniques to enhance PoseNet with Darknet and Mediapipe.

涵盖的内容

6个视频1个作业1个插件

In this module, we will dive deeper into PoseNet for pose estimation. You will learn the full implementation process, gaining a thorough understanding of how to apply PoseNet effectively.

涵盖的内容

2个视频1个作业1个插件

In this module, we will introduce you to DeepFake technology, discussing its ethical concerns and providing techniques for detecting DeepFake content using AI-based classification methods.

涵盖的内容

2个视频1个作业1个插件

In this module, we will explain the role of face recognition in attendance management systems. You will learn how to implement and fine-tune such a system for accurate tracking of attendance.

涵盖的内容

2个视频3个作业

位教师

Packt - Course Instructors
Packt
971 门课程232,654 名学生

提供方

Packt

从 Software Development 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题