Packt
Exploratory Data Analysis & Core ML Algorithms

通过 Coursera Plus 解锁访问 10,000 多门课程。开始 7 天免费试用

Packt

Exploratory Data Analysis & Core ML Algorithms

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

1 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Apply exploratory data analysis techniques to preprocess and visualize data for machine learning.

  • Implement linear regression for predictive modeling and forecasting tasks.

  • Master logistic regression and optimize classification models using AUC-ROC.

  • Build decision trees and Naive Bayes classifiers, tuning models for better performance.

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

7 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Mastering Machine Learning Algorithms using Python 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

In this module, we will explore the importance of exploratory data analysis (EDA) in the data science process. You will learn various tools and processes to uncover patterns, detect anomalies, and summarize key features of your data. The module includes several hands-on projects, allowing you to apply EDA techniques to real-world datasets.

涵盖的内容

9个视频2篇阅读材料1个作业

In this module, we will dive deep into linear regression, a core machine learning technique. You will gain a comprehensive understanding of its underlying concepts, including cost functions and gradient descent. Through hands-on projects, you'll build and optimize models using real-world data, focusing on both theoretical foundations and practical applications.

涵盖的内容

13个视频1个作业1个插件

In this module, we will introduce you to logistic regression, an essential algorithm for binary classification problems. You will explore how to prepare data, build models, and assess their performance. Additionally, you will learn how to optimize logistic regression models using techniques such as AUC-ROC and feature engineering.

涵盖的内容

8个视频1个作业1个插件

In this module, we will cover the Naive Bayes classification algorithm, focusing on its probabilistic nature and applications in classification tasks. Through real-world case studies, such as employee attrition prediction, you will learn how to build and optimize Naive Bayes models effectively.

涵盖的内容

4个视频1个作业

In this module, we will introduce decision tree classifiers, focusing on how they work and their advantages in classification tasks. You will explore key concepts such as the Gini Index, Entropy, and pruning. By the end of this module, you will be able to apply decision trees to real-world datasets and optimize them for improved model performance.

涵盖的内容

6个视频1篇阅读材料3个作业1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Packt - Course Instructors
Packt
1,194 门课程293,786 名学生

提供方

Packt

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题