Packt
Intermediate Data Manipulation and Machine Learning
Packt

Intermediate Data Manipulation and Machine Learning

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将学到什么

  • Identify and describe core concepts of AI and machine learning

  • Explain and illustrate various regression analysis techniques to solve real-world problems

  • Utilize methods to build and evaluate robust machine learning models

  • Assess clustering and dimensionality reduction methods for data analysis

要了解的详细信息

可分享的证书

添加到您的领英档案

作业

7 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 R Ultimate 2024 - R for Data Science and Machine Learning 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有14个模块

In this module, we will lay the groundwork for understanding AI and machine learning. We will start by exploring the core concepts of AI, delve into the fundamentals of machine learning, and gain insights into how models are built and trained to solve real-world problems.

涵盖的内容

3个视频2篇阅读材料1个插件

In this module, we will dive deep into regression analysis, starting with an overview of different regression types. We will then explore univariate and multivariate regression, including hands-on labs and exercises, to solidify our understanding of these essential techniques.

涵盖的内容

12个视频1个插件

In this module, we will focus on preparing and evaluating machine learning models. We will explore critical concepts like underfitting and overfitting, learn to split data for model assessment, and practice resampling techniques to ensure robust model performance.

涵盖的内容

6个视频1个作业1个插件

In this module, we will delve into the fundamentals of regularization. We will explore how techniques like L1 and L2 regularization work and practice applying them in hands-on lab sessions to enhance the reliability and performance of our models.

涵盖的内容

2个视频1个插件

In this module, we will cover the basics of classification. We will start with confusion matrices and ROC curves, then engage in interactive and lab sessions to gain hands-on experience in evaluating and optimizing classification models.

涵盖的内容

7个视频1个插件

In this module, we will explore decision trees for classification. We will learn how they work, engage in lab sessions to build and implement decision tree models, and apply our knowledge to solve practical classification problems.

涵盖的内容

4个视频1个作业1个插件

In this module, we will delve into Random Forests. We will understand the principles of ensemble learning, engage in coding labs to build and optimize Random Forest models, and explore how these techniques improve classification performance.

涵盖的内容

5个视频1个插件

In this module, we will explore logistic regression for classification. We will learn how logistic regression models work, engage in coding labs to build and interpret these models, and apply our knowledge to solve practical classification tasks.

涵盖的内容

5个视频1个插件

In this module, we will delve into Support Vector Machines (SVM). We will learn how SVMs work, engage in coding labs to build and optimize SVM models, and apply our knowledge to solve challenging classification tasks.

涵盖的内容

5个视频1个作业1个插件

In this module, we will explore ensemble models. We will understand how these techniques work, discover how they enhance classification performance, and evaluate their impact on model accuracy and robustness.

涵盖的内容

1个视频1个插件

In this module, we will delve into association rules. We will explore the fundamentals of this technique, apply the Apriori algorithm in hands-on labs, and practice extracting meaningful associations and patterns from real-world datasets.

涵盖的内容

7个视频1个插件

In this module, we will explore clustering techniques. We will start with an overview, then dive into specific methods like k-means, hierarchical clustering, and DBSCAN. Through hands-on labs and exercises, we will gain practical experience in grouping data and uncovering patterns.

涵盖的内容

10个视频1个作业1个插件

In this module, we will delve into dimensionality reduction. We will explore techniques like PCA and t-SNE, engage in practical lab sessions, and apply these methods to simplify and interpret complex data structures.

涵盖的内容

12个视频1个插件

In this module, we will explore reinforcement learning. We will understand the mechanisms of RL algorithms, apply the UCB algorithm in interactive and lab sessions, and gain practical skills in optimizing RL agents for better decision-making in uncertain environments.

涵盖的内容

6个视频1篇阅读材料3个作业1个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Packt - Course Instructors
Packt
971 门课程229,122 名学生

提供方

Packt

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题