Optimize Deep Learning: Tune PyTorch Models is an intermediate course for deep learning practitioners ready to move beyond off-the-shelf training and gain granular control over their models. Standard training loops can hide critical issues, leading to unstable performance and suboptimal results. This course empowers you to take full command of the training process using PyTorch Lightning.

Optimize Deep Learning: Tune PyTorch Models
本课程是 LLM Optimization & Evaluation 专项课程 的一部分

位教师:LearningMate
包含在 中
您将学到什么
Use PyTorch Lightning to implement callbacks, diagnose instabilities, and optimize model performance.
您将获得的技能
要了解的详细信息
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有3个模块
This module introduces the core concepts of PyTorch Lightning that streamline deep learning development. You will learn why refactoring from raw PyTorch is essential for building scalable, production-ready models. You will get hands-on experience structuring your code into a LightningModule and using the Trainer to handle the engineering boilerplate, allowing you to focus purely on the science.
涵盖的内容
1个视频1篇阅读材料2个作业
In this module, you will learn to take full control of your training process using callbacks. You will discover how to implement automated rules for early stopping to prevent wasted computation and model checkpointing to save your best-performing models, including how to sync them with cloud storage for production-ready workflows.
涵盖的内容
1个视频1篇阅读材料1个作业1个非评分实验室
In this final module, you will step into the role of a deep learning diagnostician. You will learn to identify and fix common training instabilities like exploding and vanishing gradients by monitoring model internals. You will use these skills to debug a real training job and interact with an AI coach to sharpen your critical thinking.
涵盖的内容
2个视频1篇阅读材料2个作业1个非评分实验室
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Machine Learning 浏览更多内容
状态:免费试用
状态:免费试用DeepLearning.AI
状态:免费试用Coursera
状态:免费试用
人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,
¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。




