Coursera
Deep Learning with PyTorch
Coursera

Deep Learning with PyTorch

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级

推荐体验

3 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

您将获得的技能

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

作业

17 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累 Data Analysis 领域的专业知识

本课程是 Machine Learning with Scikit-learn, PyTorch & Hugging Face 专业证书 专项课程的一部分
在注册此课程时,您还会同时注册此专业证书。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 通过 Coursera 获得可共享的职业证书

该课程共有4个模块

In this module, you'll become acquainted with deep learning fundamentals and build your first neural networks with PyTorch. You'll investigate how neurons work together to recognize patterns, explore PyTorch's tensor capabilities, and gain practical experience implementing feedforward networks. Through hands-on exercises, you'll understand the mathematics behind neural networks while building practical skills that serve as your foundation for more advanced techniques.

涵盖的内容

13个视频6篇阅读材料5个作业4个非评分实验室2个插件

Image analysis and computer vision tasks require a different type of tool: Convolutional Neural Networks (CNNs). In this module, you'll learn how CNNs automatically extract features from images through specialized layers, build your own models for image classification, and leverage pre-trained networks to solve real-world problems with limited data. Through hands-on implementation in PyTorch, you'll master the techniques that have revolutionized computer vision and enabled breakthroughs in fields from autonomous driving to medical imaging.

涵盖的内容

9个视频4篇阅读材料4个作业3个非评分实验室1个插件

Master the art of sequence modeling with Recurrent Neural Networks and LSTMs. This module teaches you how to process and generate sequential data like text and time series. You'll understand the inner workings of RNNs, learn why LSTMs better capture long-term dependencies, and implement practical applications in natural language processing and time series forecasting. Through a combination of theory and hands-on practice, you'll gain the skills to build models that understand context and temporal patterns.

涵盖的内容

7个视频4篇阅读材料4个作业3个非评分实验室2个插件

Learn advanced techniques to train deeper, faster, and more accurate neural networks. This module covers the practical skills that separate beginners from professionals in deep learning implementation. You'll tackle regularization methods to prevent overfitting, explore initialization strategies that enable training deeper networks, and implement training optimizations that accelerate convergence and improve stability. By applying these techniques, you'll be able to build models that generalize well to new data while training efficiently.

涵盖的内容

7个视频6篇阅读材料4个作业1个编程作业3个非评分实验室2个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

Professionals from the Industry
Coursera
27 门课程6,623 名学生

提供方

Coursera

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题