EDUCBA
Master Time Series Forecasting with R: Analyze & Predict
EDUCBA

Master Time Series Forecasting with R: Analyze & Predict

EDUCBA

位教师:EDUCBA

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
7 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
7 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Define forecasting fundamentals and classify methods for time-dependent data.

  • Apply regression, decomposition, and exponential smoothing in R.

  • Implement ARIMA and SARIMA models with ACF/PACF diagnostics for accuracy.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

September 2025

作业

11 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有3个模块

This module introduces learners to the fundamental principles of forecasting within the field of business analytics. It explains the purpose and scope of forecasting, explores different forecasting methods, and highlights common challenges businesses face when predicting future trends. Learners will also gain practical insights into simple forecasting approaches, transformations, and accuracy evaluation techniques, building a strong foundation for advanced forecasting models.

涵盖的内容

12个视频4个作业1个插件

This module explores how regression techniques and decomposition methods can be applied to time series forecasting. Learners will gain an in-depth understanding of simple, multiple, and non-linear regression, the use of predictors and lagged variables, and the unique considerations of time series regression. The module also introduces decomposition approaches to separate time series into trend, seasonal, cyclical, and irregular components, helping learners build accurate and interpretable forecasting models in R.

涵盖的内容

12个视频4个作业

This module focuses on advanced time series forecasting techniques, including exponential smoothing, ARIMA, and Seasonal ARIMA models. Learners will explore the theoretical foundations and practical applications of autoregressive and moving average models, understand the role of ACF and PACF in model selection, and learn how to handle seasonal and non-seasonal time series data. By mastering these advanced methods, learners will be able to build robust and accurate forecasting models in R that address both short-term fluctuations and long-term seasonal trends.

涵盖的内容

8个视频3个作业

位教师

EDUCBA
EDUCBA
403 门课程121,158 名学生

提供方

EDUCBA

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题