By the end of this course, learners will be able to identify machine learning foundations, apply statistical concepts, evaluate probability distributions, and implement core algorithms in R. Participants will gain practical skills in data manipulation, regression, classification, decision trees, and ensemble learning, building a comprehensive understanding of both theory and application.


您将学到什么
Apply ML foundations, probability, and statistical concepts in R.
Implement regression, classification, and decision tree models.
Use ensemble methods like random forests and boosting in R.
您将获得的技能
要了解的详细信息

添加到您的领英档案
October 2025
13 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有4个模块
This module introduces the foundations of Machine Learning and the R programming environment. Learners will explore the key concepts of supervised and unsupervised learning, regression versus classification, and the practical steps to apply machine learning to real-world problems. In addition, the module covers essential R programming skills for data manipulation, vector operations, and dataset preparation, ensuring a strong foundation for statistical and machine learning tasks.
涵盖的内容
10个视频3个作业
This module covers statistical concepts essential for building and interpreting machine learning models. Learners will review core measures such as variance, correlation, R-squared, and standard error while identifying common statistical mistakes. The module also extends to advanced topics including linear regression, statistical assumptions, and interpretation of outputs, equipping learners with the ability to analyze data with confidence.
涵盖的内容
12个视频3个作业
This module focuses on probability distributions and hypothesis testing, both critical to statistical inference. Learners will examine discrete and continuous probability distributions, variance-covariance structures, and hypothesis rejection criteria. The module also introduces classical distributions such as t, chi-square, and Poisson, along with visualization techniques for testing data assumptions and interpreting results.
涵盖的内容
12个视频3个作业
This module introduces core machine learning algorithms, focusing on regression, classification, decision trees, and ensemble methods. Learners will explore K-Nearest Neighbors (KNN), generalized regression models, decision tree classifiers, and the use of pruning to improve performance. The module concludes with ensemble learning techniques, including random forests and boosting, for building powerful predictive models.
涵盖的内容
17个视频4个作业
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
从 Machine Learning 浏览更多内容
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
更多问题
提供助学金,








