This 90-minute guided-project, "Pyspark for Data Science: Customer Churn Prediction," is a comprehensive guided-project that teaches you how to use PySpark to build a machine learning model for predicting customer churn in a Telecommunications company. This guided-project covers a range of essential tasks, including data loading, exploratory data analysis, data preprocessing, feature preparation, model training, evaluation, and deployment, all using Pyspark. We are going to use our machine learning model to identify the factors that contribute to customer churn, providing actionable insights to the company to reduce churn and increase customer retention. Throughout the guided-project, you'll gain hands-on experience with different steps required to create a machine learning model in Pyspark, giving you the tools to deliver an AI-driven solution for customer churn. Prerequisites for this guided-project include basic knowledge of Machine Learning and Decision Trees, as well as familiarity with Python programming concepts such as loops, if statements, and lists.


您将学到什么
Use AI driven solution to solve a business problem
Build a machine learning model with PySpark
Apply data cleansing activities using PySpark
您将练习的技能
要了解的详细信息

添加到您的领英档案
仅桌面可用
了解顶级公司的员工如何掌握热门技能

在不到 2 个小时的时间内学习、练习和应用为就业做好准备的技能
- 接受行业专家的培训
- 获得解决实训工作任务的实践经验
- 使用最新的工具和技术来建立信心

关于此指导项目
分步进行学习
在与您的工作区一起在分屏中播放的视频中,您的授课教师将指导您完成每个步骤:
Set up the project environment (11 min)
Exploratory Data Analysis Part I - Numerical Columns (10 min)
Exploratory Data Analysis Part II - Categorical Columns (10 min)
Preprocess and clean data (7 min)
Demonstrate your understanding of Data Exploration and Preprocessing (5 min)
Prepare the input data for your model Part I - Numerical Features (6 min)
Prepare the input data for your model Part II - Categorical Features (10 min)
Train your decision tree (9 min)
Evaluate your model (11 min)
Deploy your model (6 min)
Challenge Activity: Employee Attrition Prediction (6 min)
推荐体验
Basic knowledge of Machine Learning and Decision Trees, Python programming language (basic concepts such as: loops, if statements and lists)
11个项目图片
位教师

学习方式
基于技能的实践学习
通过完成与工作相关的任务来练习新技能。
专家指导
使用独特的并排界面,按照预先录制的专家视频操作。
无需下载或安装
在预配置的云工作空间中访问所需的工具和资源。
仅在台式计算机上可用
此指导项目专为具有可靠互联网连接的笔记本电脑或台式计算机而设计,而不是移动设备。
人们为什么选择 Coursera 来帮助自己实现职业发展




学生评论
23 条评论
- 5 stars
65.21%
- 4 stars
30.43%
- 3 stars
4.34%
- 2 stars
0%
- 1 star
0%
显示 3/23 个
已于 Jun 28, 2023审阅
Explanation is very clear and easy to understand. Well structure.Many thanks.
已于 Jan 25, 2025审阅
Good overview to understand basic codes for pyspark queries.
已于 Feb 5, 2025审阅
Excellent course covering basic ML methods and using intermediate techniques to solve ML related problems with PySpark
您可能还喜欢
- 状态:免费试用
- 状态:免费试用
Edureka
- 状态:免费
Coursera Project Network
- 状态:预览
Edureka
常见问题
购买指导项目后,您将获得完成指导项目所需的一切,包括通过 Web 浏览器访问云桌面工作空间,工作空间中包含您需要了解的文件和软件,以及特定领域的专家提供的分步视频说明。
由于您的工作空间包含适合笔记本电脑或台式计算机使用的云桌面,因此指导项目不在移动设备上提供。
指导项目授课教师是特定领域的专家,他们在项目的技能、工具或领域方面经验丰富,并且热衷于分享自己的知识以影响全球数百万的学生。