Northeastern University
Machine Learning and Data Analytics Part 2
Northeastern University

Machine Learning and Data Analytics Part 2

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
中级 等级
需要一些相关经验
2 周 完成
在 10 小时 一周
灵活的计划
自行安排学习进度

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有7个模块

In this module, we'll learn two powerful techniques for refining predictive models: Ridge regression and Lasso regression. These methods address the challenge of overfitting in linear regression by introducing regularization techniques. Ridge regression employs L2 regularization to control the magnitude of coefficients, while Lasso regression utilizes L1 regularization to perform feature selection. Throughout this module, we'll explore the principles behind Ridge and Lasso regression, examine their mathematical foundations, understand how they tackle overfitting, learn how to implement them in practical scenarios, and discuss the intricacies of these essential regression techniques.

涵盖的内容

3个视频9篇阅读材料1个作业

In this module, we'll dive into the core principles and algorithms of clustering in data mining. You'll learn about key techniques such as K-Means, hierarchical clustering, and DBSCAN. Through hands-on activities and real-world datasets, you'll learn to identify patterns and groupings effectively. With K-Means clustering, we’ll explore how to partition data into distinct groups based on similarity. Hierarchical clustering will help us dive into creating dendrograms to visualize relationships between data points. Finally, DBSCAN will introduce you to density-based clustering, ideal for detecting outliers and noise in your data. Get ready to unlock the power of clustering algorithms!

涵盖的内容

3个视频7篇阅读材料1个作业

In this module, we discuss the fundamental concepts and algorithms of association rule mining, including Apriori and FP-Growth. Through the Association Rule Mining lesson, you'll grasp the essence of discovering meaningful patterns and relationships in large datasets. The FP-Growth (Frequent Pattern Growth) Algorithm lesson will equip you with the skills to create and implement efficient algorithms for identifying frequent itemsets and strong association rules. Additionally, you'll learn how collaborative filtering, a technique widely used in recommendation systems, leverages association rule mining to provide personalized recommendations. By the end of the module, you'll be adept at evaluating the effectiveness of association rules using key metrics such as support, confidence, and lift.

涵盖的内容

3个视频6篇阅读材料1个作业

In this module, you'll master the application of support vector machines (SVMs) for classification tasks, learning to leverage this powerful discriminative algorithm effectively. We'll explore the significance of support vectors in defining the margin that separates different classes, enhancing the model's generalization capabilities. You'll gain insights into the differences between a hard margin SVM and soft margin SVM, with a focus on handling real-world, noisy data. Additionally, we'll delve into the mathematical formulation of the soft margin SVM, emphasizing the objective function and its critical role in balancing margin width and classification accuracy.

涵盖的内容

3个视频5篇阅读材料1个作业

This module is designed to provide you with a comprehensive understanding of neural network architectures and their functionality. You will explore the intricacies of feedforward networks, the mechanics of backpropagation, and foundational concepts in deep learning. Through practical examples and hands-on exercises, you'll learn how to build and train neural networks to solve complex problems. By the end of this module, you will have a solid grasp of how neural networks operate and be prepared to apply deep learning techniques in various real-world scenarios.

涵盖的内容

3个视频3篇阅读材料1个作业

Welcome to the Text Mining Module! This module will equip you with essential skills and knowledge in text mining, covering key concepts, techniques, and the related challenges you may encounter. You will learn about text preprocessing, tokenization, and feature extraction, all crucial for transforming raw text into valuable data. We will delve into applying various text mining algorithms for practical applications, such as information retrieval, sentiment analysis, and topic modeling. By the end of this module, you will be adept at leveraging text mining tools to uncover insights and patterns from textual data, enhancing your data analysis capabilities.

涵盖的内容

2个视频3篇阅读材料1个作业

In this module, you will explore the realm of time series analysis, mastering fundamental concepts and techniques essential for understanding and analyzing temporal data patterns. You will gain an understanding of the triad of trend, seasonality, and noise, deciphering their influence on time series behavior. Through hands-on exercises, you will learn to discern patterns, identify trends, and isolate seasonal fluctuations within time series data. Building upon this foundation, you will then embark on a journey through advanced time series modeling techniques. You will wield powerful tools such as ARIMA, exponential smoothing, and LSTM networks to forecast future trends and detect anomalies within temporal data streams. By the module's conclusion, you will emerge equipped with the skills and knowledge necessary to harness the predictive power of time series analysis in diverse domains.

涵盖的内容

2个视频3篇阅读材料1个作业

位教师

Chinthaka Pathum Dinesh  Herath Gedara
Northeastern University
2 门课程66 名学生

提供方

从 Data Analysis 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题