Northeastern University
Introduction to Machine Learning and Algorithmic Bias
Northeastern University

Introduction to Machine Learning and Algorithmic Bias

Venkat Kuppuswamy

位教师:Venkat Kuppuswamy

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
6 小时 完成
灵活的计划
自行安排学习进度
深入了解一个主题并学习基础知识。
初级 等级
无需具备相关经验
6 小时 完成
灵活的计划
自行安排学习进度

您将学到什么

  • Distinguish between artificial intelligence and machine learning, their real-world applications, and the factors driving their widespread adoption.

  • Gain insight on the four phases of the machine learning process to collaborate and make informed decisions about AI initiatives.

  • Recognize different types of algorithmic bias in AI systems and their real-world consequences across various sectors.

  • Examine mitigation strategies for algorithmic bias and compare governance models from industry self-regulation to governmental regulatory frameworks.

要了解的详细信息

可分享的证书

添加到您的领英档案

最近已更新!

June 2025

作业

23 项作业

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

该课程共有4个模块

This introductory module demystifies artificial intelligence and machine learning by exploring their fundamental concepts, the differences between them, and their real-world applications that impact our daily lives. Through clear explanations and concrete examples, you'll gain essential knowledge about how these technologies function across various contexts, building a foundation for understanding their strategic importance and preparing you for deeper exploration of their mechanisms and ethical implications in later modules.

涵盖的内容

1个视频13篇阅读材料5个作业1个讨论话题2个插件

This module provides an overview of the machine learning process, exploring the four essential phases: data collection, data preparation, model development, and model evaluation. Through understanding these foundational phases, learners will gain practical knowledge that enables effective collaboration with technical teams, better evaluation of AI initiatives, and identification of machine learning opportunities within their organizations.

涵盖的内容

1个视频17篇阅读材料6个作业1个插件

This module examines how algorithmic bias emerges in AI systems, revealing why even sophisticated machine learning algorithms can produce unfair or inaccurate results. Students explore three critical types of bias—historical, representation, and measurement—through real-world examples spanning healthcare, hiring, and financial services. By understanding how biases infiltrate AI systems and learning to identify their warning signs, students develop the analytical skills needed to assess algorithmic fairness and evaluate potential solutions in business contexts.

涵盖的内容

2个视频16篇阅读材料7个作业1个插件

This module equips students with practical tools to address algorithmic bias in business applications. Through examination of bias mitigation techniques—from synthetic data generation to algorithmic modifications that ensure equal performance across demographic groups—students learn how to build more inclusive AI systems. The module also explores governance frameworks, comparing industry self-regulation with government oversight approaches such as the EU AI Act, preparing future leaders to navigate the evolving landscape of responsible AI deployment while maintaining competitive advantage.

涵盖的内容

3个视频18篇阅读材料5个作业

位教师

Venkat Kuppuswamy
Northeastern University
1 门课程200 名学生

提供方

从 Business Essentials 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'
Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题