SAS
The Power of Machine Learning: Boost Business, Accumulate Clicks, Fight Fraud, and Deny Deadbeats
SAS

The Power of Machine Learning: Boost Business, Accumulate Clicks, Fight Fraud, and Deny Deadbeats

Eric Siegel

位教师:Eric Siegel

13,375 人已注册

包含在 Coursera Plus

深入了解一个主题并学习基础知识。
4.7

(149 条评论)

初级 等级

推荐体验

灵活的计划
1 周 在 10 小时 一周
自行安排学习进度
95%
大多数学生喜欢此课程
深入了解一个主题并学习基础知识。
4.7

(149 条评论)

初级 等级

推荐体验

灵活的计划
1 周 在 10 小时 一周
自行安排学习进度
95%
大多数学生喜欢此课程

您将学到什么

  • Participate in the deployment of machine learning

  • Identify potential machine learning deployments that will generate value for your organization

  • Report on the predictive performance of machine learning and the profit it generates

  • Understand the potential of machine learning and avoid the false promises of “artificial intelligence”

要了解的详细信息

可分享的证书

添加到您的领英档案

授课语言:英语(English)

了解顶级公司的员工如何掌握热门技能

Petrobras, TATA, Danone, Capgemini, P&G 和 L'Oreal 的徽标

积累特定领域的专业知识

本课程是 Machine Learning Rock Star – the End-to-End Practice 专项课程 专项课程的一部分
在注册此课程时,您还会同时注册此专项课程。
  • 向行业专家学习新概念
  • 获得对主题或工具的基础理解
  • 通过实践项目培养工作相关技能
  • 获得可共享的职业证书

该课程共有5个模块

What does this course – and the overall three-course specialization – cover and why is it right for you? Find out how this unique curriculum will empower you to generate value with machine learning. This module outlines the specialization's unusually holistic coverage and its applicability for both business-level and tech-focused learners. You'll see why this integrated coverage is a valuable place to begin, as you prepare to take on the end-to-end process of deploying machine learning. This module will orient you and frame the upcoming content – as such, it has no assessments.

涵盖的内容

9个视频4篇阅读材料1个应用程序项目1个讨论话题

This module covers the business value of machine learning, the very purpose that it serves. You'll see what kinds of business operations machine learning improves and how it improves them. And we'll lay the foundation: what the data needs to look like, what is learned from that data, and how the predictions generated by machine learning render all kinds of large-scale operations more effective.

涵盖的内容

13个视频6篇阅读材料15个作业1次同伴评审2个讨论话题

We are up to our ears in data, but how much can this raw material really tell us? And what actually makes it predictive? This module will show you what your data needs to look like before your computer can learn from it – the particular form and format – and you'll see the kinds of fascinating and bizarre predictive insights discovered within that data. Then we'll take the first steps in forming a predictive model, a mechanism that serves to combine such insights.

涵盖的内容

11个视频1篇阅读材料11个作业1次同伴评审1个应用程序项目2个讨论话题

And now the main event: predictive modeling. This module will show you how software automatically generates a predictive model from data and the elegant trick that's universally applied in order to verify that the model actually works. We'll visually compare and contrast popular modeling methods and demonstrate how to draw a profit curve that estimates the bottom line that will be delivered by deploying a model. Then we'll take a hard look at both the potential and limits of machine learning – how far advanced methods like deep learning could propel us, and yet why fundamental data requirements ultimately impose certain restrictions.

涵盖的内容

11个视频4篇阅读材料11个作业1次同伴评审1个应用程序项目2个讨论话题

Machine learning is sometimes referred to as "artificial intelligence", but that ill-defined term overpromises and confuses just as much as it elicits excitement. The first portion of this module will clear up common myths about AI and show you its downside, the costs incurred by legitimizing AI as a field. Then we'll turn to the great ethical responsibilities you are taking on by entering the field of machine learning. You'll see five ways that machine learning threatens social justice and we'll dive more deeply into one: discriminatory models that base their decisions in part on a protected class like race, religion, or sexual orientation. But then we'll shift gears and balance this out by defending machine learning, demonstrating all the good it does in the world and holding its criticisms up to a higher standard.

涵盖的内容

10个视频4篇阅读材料10个作业2个讨论话题2个插件

获得职业证书

将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。

位教师

授课教师评分
4.9 (43个评价)
Eric Siegel
SAS
5 门课程17,003 名学生

提供方

SAS

从 Machine Learning 浏览更多内容

人们为什么选择 Coursera 来帮助自己实现职业发展

Felipe M.
自 2018开始学习的学生
''能够按照自己的速度和节奏学习课程是一次很棒的经历。只要符合自己的时间表和心情,我就可以学习。'
Jennifer J.
自 2020开始学习的学生
''我直接将从课程中学到的概念和技能应用到一个令人兴奋的新工作项目中。'
Larry W.
自 2021开始学习的学生
''如果我的大学不提供我需要的主题课程,Coursera 便是最好的去处之一。'
Chaitanya A.
''学习不仅仅是在工作中做的更好:它远不止于此。Coursera 让我无限制地学习。'

学生评论

4.7

149 条评论

  • 5 stars

    82.55%

  • 4 stars

    13.42%

  • 3 stars

    1.34%

  • 2 stars

    0.67%

  • 1 star

    2.01%

显示 3/149 个

RB
5

已于 Sep 1, 2020审阅

AD
5

已于 Apr 28, 2023审阅

EC
5

已于 Aug 25, 2020审阅

Coursera Plus

通过 Coursera Plus 开启新生涯

无限制访问 10,000+ 世界一流的课程、实践项目和就业就绪证书课程 - 所有这些都包含在您的订阅中

通过在线学位推动您的职业生涯

获取世界一流大学的学位 - 100% 在线

加入超过 3400 家选择 Coursera for Business 的全球公司

提升员工的技能,使其在数字经济中脱颖而出

常见问题

¹ 本课程的部分作业采用 AI 评分。对于这些作业,将根据 Coursera 隐私声明使用您的数据。