Ce cours porte sur la création de modèles de ML à l'aide de TensorFlow et Keras, l'amélioration de la précision des modèles de ML et l'écriture de modèles de ML pour une utilisation évolutive.


Build, Train and Deploy ML Models with Keras on Google Cloud - Français
包含在 中
您将学到什么
Concevoir et créer un pipeline de données d'entrée TensorFlow.
Manipuler des données d'ensembles de données volumineux à l'aide de la bibliothèque tf.data.
Créer des modèles simples ou avancés à l'aide des API Keras Sequential et Keras Functional
Entraîner, déployer et utiliser en production des modèles de ML à grande échelle à l'aide de Vertex AI
您将获得的技能
- Data Transformation
- Artificial Neural Networks
- Data Processing
- MLOps (Machine Learning Operations)
- Feature Engineering
- Google Cloud Platform
- Machine Learning
- Keras (Neural Network Library)
- Deep Learning
- Artificial Intelligence and Machine Learning (AI/ML)
- Scalability
- Data Pipelines
- Application Deployment
- Tensorflow
要了解的详细信息

添加到您的领英档案
4 项作业
了解顶级公司的员工如何掌握热门技能

积累特定领域的专业知识
- 向行业专家学习新概念
- 获得对主题或工具的基础理解
- 通过实践项目培养工作相关技能
- 获得可共享的职业证书

该课程共有6个模块
Ce module présente le cours et ses objectifs.
涵盖的内容
1个视频
Ce module présente le framework TensorFlow, ses composants principaux ainsi que la hiérarchie globale de l'API.
涵盖的内容
4个视频1篇阅读材料1个作业
Les données sont essentielles aux modèles de machine learning, mais collecter les bonnes ne suffit pas. Vous devez également vous assurer de mettre en place les processus adéquats pour nettoyer, analyser et transformer ces données si nécessaire, pour que les modèles puissent les exploiter pleinement. Dans ce module, nous verrons comment entraîner un modèle avec des ensembles de données volumineux grâce à tf.data, travailler avec des fichiers en mémoire et préparer les données pour l'entraînement. Pour terminer, nous évoquerons les représentations vectorielles continues et le scaling des données effectué à l'aide de couches de prétraitement tf.keras.
涵盖的内容
10个视频1篇阅读材料1个作业2个应用程序项目
Dans ce module, nous aborderons les fonctions d'activation et expliquerons en quoi elles sont nécessaires pour permettre aux réseaux de neurones profonds d'identifier les cas de non-linéarité dans les données. Ensuite, nous présenterons les réseaux de neurones profonds avec les API Keras Sequential et Keras Functional avant d'évoquer le sous-classement, qui offre une plus grande flexibilité pour la création de modèles. Enfin, nous parlerons de la régularisation.
涵盖的内容
10个视频1篇阅读材料1个作业2个应用程序项目
Dans ce module, nous verrons comment entraîner des modèles TensorFlow à grande échelle avec Vertex AI.
涵盖的内容
3个视频1篇阅读材料1个作业1个应用程序项目
Ce module est un résumé du cours "Build, Train, and Deploy ML Models with Keras on Google Cloud".
涵盖的内容
4篇阅读材料
获得职业证书
将此证书添加到您的 LinkedIn 个人资料、简历或履历中。在社交媒体和绩效考核中分享。
位教师

提供方
从 Machine Learning 浏览更多内容
- 状态:免费试用
Coursera Project Network
人们为什么选择 Coursera 来帮助自己实现职业发展




常见问题
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
更多问题
提供助学金,