Chevron Left
返回到 Natural Language Processing with Classification and Vector Spaces

学生对 DeepLearning.AI 提供的 Natural Language Processing with Classification and Vector Spaces 的评价和反馈

4.6
4,597 个评分

课程概述

In Course 1 of the Natural Language Processing Specialization, you will: a) Perform sentiment analysis of tweets using logistic regression and then naïve Bayes, b) Use vector space models to discover relationships between words and use PCA to reduce the dimensionality of the vector space and visualize those relationships, and c) Write a simple English to French translation algorithm using pre-computed word embeddings and locality-sensitive hashing to relate words via approximate k-nearest neighbor search. By the end of this Specialization, you will have designed NLP applications that perform question-answering and sentiment analysis, created tools to translate languages and summarize text. This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization. Łukasz Kaiser is a Staff Research Scientist at Google Brain and the co-author of Tensorflow, the Tensor2Tensor and Trax libraries, and the Transformer paper....

热门审阅

YB

Oct 15, 2022

This course is excellent and is well-organized​. I would definitely recommend it to others. The instructor​ explains the topic in a crystal clear way​. I​ learned a lot and had a great time. Thanks!

MR

Feb 11, 2023

I really enjoy and this course is exactly what I expect. It covers both practical and conceptual aspects greatly and I recommend everyone to enroll in this course to make their NLP foundations strong

筛选依据:

801 - Natural Language Processing with Classification and Vector Spaces 的 825 个评论(共 907 个)

创建者 David M

Dec 22, 2021

I think it is an okay course for some basics. Most tasks are decent and well explained. Unfortunately there are quite a few inaccuracies that only sometimes get corrected and can lead to spending way more time on tasks than necessary, translating incorrect information on the slides into the correct ones or just simply be distracting.

创建者 Sophie C

Dec 21, 2020

Not sure of what I should master after this course. If it's the theory, or, say, the main principles, then OK : I have an idea of how NLP with vectors spaces works. But I feel totally unable to implement it, concretely. Perhaps it's not a problem if, in fact, we are just shown this technique as an initiation, before more complex ones.

创建者 Kenny S

Feb 13, 2021

Overall, the course covers a good content and informative but it lacks of in-depth discussion of each topics of NLP. It's not as thorough as Deep Learning Course. Also, the programming assignment is too picky about which functions of Python to be used while there are several ways to achieve the same outputs.

创建者 Aman S

Jul 12, 2021

You guys need to work on the programming assignments, especially the teaching is below par as u guys didnt differentiate the word embedding we found by word by doc model which has to be a whole number and the embedding matrix which we generate from -1 to 1 which captures relationship between words.

创建者 Mark L

Aug 21, 2021

I would like to have seen more breadth and depth in the course, and of course I have my perpetual beef with certain Coursera courses like this one that grade the programming assignments by looking for code features (which must be matched exactly) rather than evaluating results.

创建者 Tanmay R S

Oct 22, 2022

not enogh explanation of topics ... please give in detail explanation of topic . It seems like after this course i need to do few more courses on the same topic cause it just introduces to the concepts and not giving in depth knowledge like other courses of andrew ng.

创建者 Christopher M

Aug 2, 2023

Great information but not enough opportunities to practice skills or internalize concepts. The assignments are too easy and don't let you flex much brain power. I feel like the lack of any repetition will result in almost immediately forgetting material.

创建者 James M

Nov 6, 2021

I feel like feed back and testing of your code code be more detailed to help pin point coding mistakes. I was spinning my wheels at the end and did see any solutions or discussions on my issues. I still passed but would like to see what I did wrong.

创建者 Phước T V

Sep 12, 2021

The lecture videos are a little short but provide some fundamental insights. It would be better if the videos were longer and more detailed or some supplemental resources. Overall a good course if you are a beginner or don't know where to start.

创建者 Sherali O

Dec 25, 2020

Shallow explanation in some topics in the lectures. It would be great if lecturer explained topics in more detail, and answer questions like why we use this model, show how it was created, pros and cons, and show why it works using math proofs.

创建者 Espoir M

Sep 15, 2020

I like the way the course use simple machine learning technic to solve a complicated problem,

for someone who likes mathematic a lot could be done in explaining mathematic concepts,

the assignment could be improved by using unit testing.

创建者 Gianpaolo M

Jun 24, 2021

Andrew, come back with us!

Although very interesting, the course spend too many time and many student efforts in details like PCA and LSH. This is a good way to loss the big picture during the course.

创建者 Sina M

May 14, 2023

Compared to prior deepLearning Ai courses. the lecturers were very robotic and un natural. The explanations were much less clear and less effort was made to explain the intuitons behind formulas.

创建者 shaider s

Dec 19, 2020

Lectures were very straightforward and digestible, however the assignments had inconsistencies within themselves, especially between the written instructions and the comments in the code cells.

创建者 Ketipisz V

Jan 3, 2022

It's a very high level overview, I was expecting a bit more detail. The programming exercises are very basic, it felt like there could have been less but more advanced challenges to solve.

创建者 Benjamin W

Jul 19, 2024

Interesting, but surprisingly many quality issues. Some topics, such as naive Bayes classification, need a better motivation (explain intuition and connection with Bayes theorem first).

创建者 Bogomil K

Jul 27, 2021

The topics were interesting overall and the lectures even though rather short were still rather informative. Too much focus on specificities of libraries and frameworks in the exams.

创建者 Hamman S

Jan 12, 2021

While this was a great introductory course to some of the basic tenets in NLP, various ancedotal examples were too convoluted to be useful in gaining an intuitive understanding

创建者 Mansi A

Aug 22, 2020

This course provides you with a good but basic start to the world of NLP. Week 4 LSH and Hashing should be explained more clearly. Assignments are not challenging.

创建者 N N

Oct 6, 2020

Basically lecturers' delivery is not so good that you could get distracted easily.

Often, a video contents and a jupyter notebook don't match to each other.

创建者 PRANSHU K

Sep 14, 2020

Seemed easy to me. Rest all is good, the explanation and assignments.

I am reducing star by one rating because of the interface for assignment is poor.

创建者 Ahmed S E E

Jul 21, 2025

The course content is good and well organized The assignments are not useful (less challenging & the instructions are directed to the answers)

创建者 Michele V

Sep 17, 2020

Good coding part. For my background the lecture material was a bit too easy. However, if your intention was to keep it easy, then good job!

创建者 Yuthika B

Nov 30, 2022

The course misses depth and needs to focus on applications of these algorithms rather than introducing more and more algorithms so fast.

创建者 Sebastian J

Mar 25, 2024

The videos were too short to properly explain things and the notes sections after each were basically just screenshots of the video.